

Dynamic Learning is an online subscription solution that supports teachers and students with high
quality content and unique tools. Dynamic Learning incorporates elements that all work together to give
you the ultimate classroom and homework resource.

OCR only endorses the Student book and Student eTextbook. The other resources referenced here have
not been submitted for endorsement.

Teaching and Learning titles include interactive resources, lesson-planning tools, self-marking tests
and assessment. Teachers can:

 ● Use the Lesson Builder to plan and deliver outstanding lessons
 ● Share lessons and resources with students and colleagues
 ● Track student progress with Tests and Assessments

Teachers can also combine their own trusted resources alongside those from OCR GCSE (9–1)
Computer Science which has a whole host of informative and interactive resources including:

 ● A ready-made toolkit to deliver the GCSE specifi cation, including a Scheme of Work, lesson plans for
each chapter, outline presentations for all topics, and animated explanations for diffi cult key concepts

 ● Practical tasks and examples to develop problem-solving, computational thinking and OCR language-
specifi ed programming skills in chosen languages

 ● Opportunities to develop independent learning skills with activity worksheets and answers, and
additional programming exercises to enhance understanding of certain topics

 ● Sample Tasks using Linux style commands (to provide practical experience with the command line
interface) and SQL practical exercises (new to the specifi cation)

OCR GCSE (9-1) Computer Science is available as a Whiteboard eTextbook which are online
interactive versions of the printed textbook that enable teachers to:

 ● Display interactive pages to their class
 ● Add notes and highlight areas
 ● Add double-page spreads into lesson plans

Additionally the Student eTextbook of OCR GCSE (9-1) Computer Science is a downloadable version
of the printed textbook that teachers can assign to students so they can:

 ● Download and view on any device or browser
 ● Add, edit and synchronise notes across two devices
 ● Access their personal copy on the move

To fi nd out more and sign up for free trials visit: www.hoddereducation.co.uk/dynamiclearning

http://www.hoddereducation.co.uk/dynamiclearning

COMPUTER
SCIENCE

OCR GCSE
(9–1)

GEORGE ROUSE, LORNE PEARCEY, GAVIN CRADDOCK

SECOND EDITION

9781510484160.indb 1 27/05/20 7:20 PM

Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held
responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of
the home page for a website in the URL window of your browser.
Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and
other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of
origin.
Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: +44 (0)1235 827827. Fax: +44 (0)1235
400401. Email education@bookpoint.co.uk. Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service.
You can also order through our website: www.hoddereducation.co.uk
ISBN: 978 1 5104 8416 0
 George Rouse, Lorne Pearcey and Gavin Craddock 2020
First published in 2020 by
Hodder Education,
An Hachette UK Company
Carmelite House
50 Victoria Embankment
London EC4Y 0DZ
www.hoddereducation.co.uk
Impression number 10 9 8 7 6 5 4 3 2 1
Year 2024 2023 2022 2021 2020
All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval
system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such
licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk
Cover illustration © Patrick P. Palej - stock.adobe.com
Illustrations by Integra Software Services Pvt. Ltd, Pondicherry, India
Typeset by Integra Software Services Pvt. Ltd, Pondicherry, India
Printed in Italy
A catalogue record for this title is available from the British Library.

The teaching content of this resource is endorsed by OCR for use with specification GCSE Computer Science (J277). In order to gain OCR
endorsement, this resource has been reviewed against OCR’s endorsement criteria.
This resource was designed using the most up-to-date information from the specification. Specifications are updated over time which means
there may be contradictions between the resource and the specification, therefore please use the information on the latest specification and
Sample Assessment Materials at all times when ensuring students are fully prepared for their assessments.
Any references to assessment and/or assessment preparation are the publisher’s interpretation of the specification requirements and are not
endorsed by OCR. OCR recommends that teachers consider using a range of teaching and learning resources in preparing learners for assessment,
based on their own professional judgement for their students’ needs. OCR has not paid for the production of this resource, nor does OCR receive
any royalties from its sale. For more information about the endorsement process, please visit the OCR website, www.ocr.org.uk.

9781510484160.indb 2 27/05/20 7:20 PM

mailto:education@bookpoint.co.uk
http://www.hoddereducation.co.uk
http://www.hoddereducation.co.uk
http://www.cla.co.uk
http://stock.adobe.com
http://www.ocr.org.uk
http://www.fsc.org

iii

PRELIM HEADSCONTENTS

How to use this book v

SECTION 1 COMPUTER SYSTEMS 1

1.1 System architecture 2
1.1.1 Architecture of the CPU 2
1.1.2 CPU performance 6
1.1.3 Embedded systems 7

1.2 Memory and storage 12
1.2.1 Primary storage – memory 12
1.2.2 Secondary storage 15
1.2.3 Units 19
1.2.4 Data storage 22
1.2.5 Compression 39

1.3 Computer networks, connections and protocols 52
1.3.1 Networks and topologies 52
1.3.2 Wired and wireless networks, protocols and layers 63

1.4 Network security 73
1.4.1 Threats to computer systems and networks 73
1.4.2 Identifying and preventing vulnerabilities 77

1.5 Systems software 83
1.5.1 Operating systems 83
1.5.2 Utility software 86

1.6 Ethical, legal, cultural and environmental impacts of digital technology 91
1.6.1 Ethical, legal, cultural and environmental impact 91

SECTION 2 COMPUTATIONAL THINKING, ALGORITHMS AND PROGRAMMING 105

2.1 Algorithms 106
2.1.1 Computational thinking 106
2.1.2 Designing, creating and refining algorithms 107
2.1.3 Sorting and searching algorithms 112

2.2 Programming fundamentals 125
2.2.1 Programming fundamentals 125
2.2.2 Data types 134
2.2.3 Additional programming techniques 136

2.3 Producing robust programs 152
2.3.1 Defensive design 152
2.3.2 Testing 157

2.4 Boolean logic 164
2.4.1 Boolean logic 164

9781510484160.indb 3 27/05/20 7:20 PM

iv

2.5 Programming languages and integrated development environments 174
2.5.1 Languages 174
2.5.2 The integrated development environment (IDE) 177

Appendix 182

Glossary 190

Knowledge check answers 195

Index 205

Acknowledgements 210

9781510484160.indb 4 27/05/20 7:20 PM

v

To help you get the most out of it, this textbook uses the following learning features:

Important words
Highlighted in the text in green, these are terms that you will be expected to know and
understand in your exams.

Important words

You will need to know and understand the following for the exam:

Central Processing Unit (CPU)
Fetch–Execute cycle
Arithmetic Logic Unit (ALU)

Tech terms
Jargon or technical definitions in blue that you may find useful.

Tech terms

Identifier The name of a variable or constant.

Reserved keyword A word in a particular programming language that has some special
purpose and cannot be used for a variable or constant identifier.

Key point
An important idea or concept.

Key point

You should use multiples of 1000 in the exam. However, if you do use 1024 for calculations in the
exam, you will not be penalised.

Worked examples
Used to illustrate an idea or a concept, these will guide you through the reasoning behind
each step of a calculation or process.

Worked example

For example, if we have a file that is 2.5 MB, what is that in bytes?

2.5 MB = 2.5 × 1000 × 1000 or 2 500 000 bytes

HOW TO USE THIS BOOK

9781510484160.indb 5 27/05/20 7:20 PM

vi

Beyond the spec
Information that you will not be expected to know or state in an exam but will aid
understanding or add some useful context.

Beyond the spec

In a network, latency is a measure of how much time it takes for a packet of data to
travel from one device to another. Latency is affected by factors such as the transmission
media used.

Knowledge check
Quick check-ins that help you to recap and consolidate your understanding of the previous
section.

Knowledge check

1 Describe the purpose of the CPU in a computer.
2 Describe the Fetch–Execute cycle.
3 What is held in the memory address register (MAR)?

Recap and review
A targeted summary of everything you have learned in the chapter. Use this to help you
recap as you work through your course.

Extra resources
A free series of practice questions accompanies each section and is available online
at: www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal
Examiner. They are also not endorsed by OCR and have not been subject to any OCR quality
assurance processes.

9781510484160.indb 6 27/05/20 7:20 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

COMPUTER
SYSTEMS

SECTION 1

COMPUTER
SYSTEMS

SECTION 1

9781510484160.indb 1 27/05/20 7:20 PM

2

1.1
 S

ys
te

m
 a

rc
hi

te
ct

ur
e

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

1.1.1 Architecture of the
CPU

➤	 The purpose of the
CPU

➤	 Common CPU
components and their
function

➤	 Von Neumann
architecture

1.1.2 CPU performance

➤	 How common
characteristics of
CPUs affect their
performance

1.1.3 Embedded systems

➤	 The purpose and
characteristics of
embedded systems

➤	 Examples of
embedded systems

1.1

SYSTEM ARCHITECTURE

A computer system consists of hardware and software working together to process data.
Hardware is the name for the physical components that make up the computer system.
Software is the name for the programs that provide instructions for the computer, telling it
what to do, and is covered in Chapter 1.5.

A computer system receives information as an input, processes and stores that information,
and then outputs the results of that processing.

Input Process Output

Storage

Figure 1.1.1 Input – process – output

Processing and storage is the job of the Central Processing Unit.

1.1.1 Architecture of the CPU

The purpose of the CPU
The Central Processing Unit (CPU) is made up of billions of transistors, which are like
very small ‘on–off’ switches. The arrangement of transistors creates logic circuits that process
data, carry out instructions and control the components of the computer.

The Fetch–Execute cycle

The processor continually:

● fetches instructions from memory

● decodes these instructions

● and then executes them.

This is called the Fetch–Execute cycle. There is more detail on this a little later in the
chapter.Figure 1.1.2 A CPU

9781510484160.indb 2 27/05/20 7:20 PM

3

1.
1.

1
 A

rc
hi

te
ct

ur
e

of
 th

e
CP

U

Fetch

DecodeExecute

Figure 1.1.3 Fetch–Execute cycle

Common CPU components and their function
The CPU is made up from a number of components:

Arithmetic Logic Unit

The Arithmetic Logic Unit (ALU) is responsible for the following:

● arithmetic operations such as add, subtract, multiply and divide

● logical operations such as AND, OR and NOT, and the result of ‘less than’, ‘greater than’,
‘equal to’ comparisons

● binary shift operations (which are used for multiplication or division – see section 1.2.4).

The ALU carries out the calculations and logical decisions required by the program instructions
that the CPU is processing.

Control unit

The purpose of the control unit (CU) is to co-ordinate the activity of the CPU.

It does this by:

● fetching then decoding instructions from memory

● sending out signals to control how data moves around the parts of the CPU and memory,
in order to execute these instructions.

Cache memory

The purpose of cache memory is to provide temporary storage that the CPU can access
very quickly.

Its role in the CPU is to store instructions and data that are used repeatedly or are likely to be
required for the next CPU operation.

9781510484160.indb 3 27/05/20 7:20 PM

4

1.1
 S

ys
te

m
 a

rc
hi

te
ct

ur
e

Registers

Registers are memory locations within the CPU that hold data temporarily and can be
accessed very quickly.

Their role in the CPU is to accept, store and transfer data and instructions for immediate use
by the CPU.

These registers are used during the Fetch–Execute cycle.

Von Neumann architecture
CPU architecture describes how the different components in the CPU are laid out and
communicate with each other. The Von Neumann architecture describes a computer in
which the data and instructions are stored in the same area of memory and are indistinguishable
from each other. This means that the CPU has to decide what is an instruction and what is
simply data.

Beyond the spec

The CPU uses a very low-level language called machine code (see Chapter 2.5). Machine
code instructions are represented in binary. The value 1001 may be machine code for the
arithmetic operation addition (ADD), but it is also the binary equivalent of the decimal
number 9. Depending upon what the computer expects to find, it interprets the value
1001 as either an instruction to ADD or as the value 9.

Von Neumann architecture is the fundamental design concept behind all modern computer
systems.

There are four important registers in a CPU with a Von Neumann architecture:

Program counter (PC): The program counter keeps track of the memory location
(an address) for the next instruction. In many cases, the program counter is simply incremented
to the next memory location at the Fetch stage of the Fetch–Execute cycle, to allow the
program to be executed line by line. (Program instructions can, however, modify the value
in the program counter to alter the flow of the program so that it continues from a new
location.)

Memory data register (MDR): This register is used to store any data fetched from
memory or any data that is to be transferred to and stored in memory.

Memory address register (MAR): This register stores the location in memory (known
as an address) to be used by the MDR – that is, where the MDR needs to fetch data from or
send data to.

Accumulator (ACC): This register either stores the results of any calculations made by
the ALU, or stores the value of inputs and outputs to and from the CPU.

Figure 1.1.4 is a simplified diagram showing the layout of these components and how the CPU
communicates with memory and input/output devices. Note that you do not need to know
about buses for your exam.

9781510484160.indb 4 27/05/20 7:20 PM

5

1.
1.

1
 A

rc
hi

te
ct

ur
e

of
 th

e
CP

U

Registers

PC
ACC
MAR

Address bus

Control bus

Control
unit

ALU Input/Output

Memory

MDR

Data bus

Figure 1.1.4 A CPU with Von Neumann architecture; the arrows represent the flow of data between
components

Beyond the spec

To enable data and control signals to move around the CPU and memory, there are a
number of buses. Buses are communication channels through which data can be moved.

There are three main buses inside the computer in relation to the CPU:

Data bus: This carries data between the CPU and memory.

Control bus: This carries control signals around the CPU and memory.

Address bus: This carries memory addresses for locations to be read from or written to.

Now that you know the names of the registers in the CPU, we can revisit the Fetch–Execute
cycle so you can understand how it works in more detail.

Fetch
1 Each instruction in a computer program is stored in a particular location (or address) in

memory. The address of the next instruction is copied from the program counter and
placed in the MAR.

2 The MAR now contains a memory address. The control unit FETCHES the data that is
stored at that address and copies it to the MDR.

3 The program counter is incremented to point to the next instruction to be processed
in the program, ready for the next Fetch–Execute cycle.

Decode
4 The MDR now contains either data fetched from memory or an instruction. The control

unit DECODES the instruction to see what to do.

Execute
5 The decoded instruction is EXECUTED. This might mean performing a calculation using

the ALU, locating some data in memory, changing the program counter value – or
something else.

Once the Execute part of the cycle is complete, the next Fetch–Execute cycle begins.

9781510484160.indb 5 27/05/20 7:20 PM

6

1.1
 S

ys
te

m
 a

rc
hi

te
ct

ur
e

Knowledge check

1 Describe the purpose of the CPU in a computer.
2 Describe the Fetch–Execute cycle.
3 What is held in the memory address register (MAR)?
4 What is the purpose of the memory data register (MDR)?
5 What is the purpose of the program counter (PC) in the CPU?
6 State two arithmetic and two logical operations carried out by the Arithmetic Logic

Unit (ALU).

1.1.2 CPU performance

How common characteristics of CPUs affect
their performance
There are a number of factors that have an impact on the performance of a CPU.

Clock speed

The CPU is constantly fetching and executing instructions and the speed at which it does
this is determined by an electronic clock. This clock uses a vibrating crystal that maintains a
constant speed. Clock speeds are measured in hertz (Hz), which is the unit of frequency and
means ‘number of times per second’ – see section 1.2.4. Typical modern computers work at
speeds of up to 4 GHz (or 4 billion instructions per second). Each ‘tick’ of the clock represents
one step in the Fetch–Execute cycle. The faster the clock speed, the more instructions that
can be executed every second.

Size of cache memory

Cache memory is located between the main memory and the CPU. It is used to hold data
that needs to be accessed very quickly. Accessing cache memory is much faster than accessing
main memory (also known as random access memory (RAM) – see section 1.2.1).

The CPU control unit will first look in the cache for data or instructions, to see if they have
already been copied from main memory. If they are not in the cache memory then the control
unit will go to the main memory to locate them, and will then copy the data or instructions
to cache and then to the CPU registers.

Cache

Main
memory

CPU Data sent to CPU

Data copied to cache

Request for data

If data not in cache:
request data from
main memory

Figure 1.1.5 Cache memory is used to store data waiting to be processed

9781510484160.indb 6 27/05/20 7:20 PM

7

1.
1.

3
Em

be
dd

ed
 sy

st
em

s

The more data that can be stored in cache memory rather than main memory, the faster and
more efficient the process. Data that is likely to be required will be transferred to cache, ready
to be used.

The larger the cache memory the more likely it is that the required data will already have been
copied across from main memory. Cache memory is very expensive and while a mid-range
laptop may have 8 GB of RAM, it is likely to have just a few KB of cache.

Number of processor cores

Another factor that can affect the performance of the CPU is the number of processor
cores. Each core can fetch and execute instructions independently so a multiple core
processor can handle several instructions at the same time. While these multiple cores can
work on separate programs or parts of a program at the same time, this is only possible if the
program has been written to take advantage of multiple cores. The task that the program
is attempting must also be one that can be split up into subsections to take advantage of
multiple cores.

Knowledge check

7 What is a meant by a quad core processor?
8 What is meant by 2.3 GHz when describing a CPU?
9 Describe how cache memory is used by the CPU.

10 Describe three characteristics of a CPU that affect its performance.

1.1.3 Embedded systems

An embedded system is a computer system that has a dedicated function as part of a
larger device. The main components of a computer system are either manufactured onto a
single chip (a microcontroller) or separate circuits for processing and memory are combined
into a larger device.

Purpose and characteristics of embedded
systems
When a computer device is required to perform a single or fixed range of tasks, it can be
engineered to reduce its size and complexity in order to focus only on these tasks. Dedicated
software will be programmed into the device to complete the necessary tasks and nothing
else. The reduction of complexity of the hardware and the dedicated nature of the software
will make the device more reliable and cost effective than using a general-purpose computer.

The embedded system will typically include some read-only memory (ROM) to store the
dedicated program and some RAM (see section 1.2.1) to store user inputs and processor
outputs. For example, in a washing machine, the ROM will store all of the data describing the
separate washing cycles while the RAM will store the user’s selected options (inputs) and the
data used to display choices and progress of the washing cycle (outputs).

Embedded systems have the following characteristics:

● low power so they can operate effectively from a small power source such as in a digital
camera

● small in size so they can fit into portable devices such as a personal fitness device

Figure 1.1.6 A microcontroller

9781510484160.indb 7 27/05/20 7:20 PM

8

1.1
 S

ys
te

m
 a

rc
hi

te
ct

ur
e

● rugged so that they can operate in harsh environments such as car engine management
systems or in military applications

● low cost, making them suitable for use in mass-produced, low-cost devices such as
microwave ovens

● dedicated software to complete a single task or limited range of tasks, such as in computer
aided manufacture or control systems.

Examples of embedded systems
Embedded systems are found within common household devices such as washing machines,
dishwashers, microwaves, set-top boxes, telephones, televisions, home security and control
systems, and so on. Embedded systems are also widely used within larger and more
complex systems such as car engine management, aeroplane avionics, computer-controlled
manufacturing and military applications such as guidance systems.

Some embedded systems are connected to the internet via Wi-Fi to exchange data with
third parties, for example water meters, energy smart meters and home security or heating
monitoring systems.

Embedded systems are particularly useful for those with physical disabilities as they can make
items more accessible. This can include voice control for gadgets in the home and systems that
adapt motorised vehicles so they can be operated using limited physical movements.

Figure 1.1.7 An x-ray image of an engine control unit in a motorcycle

Knowledge check

11 Explain why embedded systems have both RAM and ROM.
12 Identify one input and one output from the embedded system in a microwave oven.
13 Give two examples of systems that use embedded computer systems and explain why

it is the most appropriate type of computer system to use in each case.

9781510484160.indb 8 27/05/20 7:20 PM

9

RE
C

A
P

A
N

D
 R

EV
IE

W

RECAP AND REVIEW
1.1 SYSTEM ARCHITECTURE

1.1.1 Architecture of the CPU
Hardware is the term that describes the physical components of
a computer.
The computer inputs, processes and stores, and outputs data.
The computer hardware works with the software to process data.
The hardware that processes the data is called the CPU (Central
Processing Unit).

Purpose of the CPU
The purpose of the CPU is to carry out a set of instructions that
is contained in a computer program.
The CPU works at high speeds governed by the clock chip.
■ The clock uses a vibrating crystal that maintains a constant

speed.
■ The clock chip operates at speeds of up to 4 GHz (or 4 billion

instructions per second).

Fetch–Execute cycle
The CPU continually fetches, decodes and executes instructions.
■ Fetch – an instruction in the form of data is retrieved from

main memory.

■ Decode – the CPU decodes the instruction.
■ Execute – the CPU performs an action according to the

instruction.

Fetch

DecodeExecute

 Fetch–Execute cycle

Important words

You will need to know and
understand the following for
the exam:

Central Processing Unit
(CPU)

Fetch–Execute cycle
Arithmetic Logic Unit

(ALU)
Control unit (CU)
Cache memory
Registers
Von Neumann architecture
Program counter (PC)
Memory data register

(MDR)
Memory address register

(MAR)
Accumulator (ACC)
Clock speed
Processor cores
Embedded system

9781510484160.indb 9 27/05/20 7:20 PM

10

1.1
 S

ys
te

m
 a

rc
hi

te
ct

ur
e

Common CPU components and their function

Arithmetic Logic Unit (ALU)
Carries out all arithmetic calculations and logical decisions, for example add, subtract, binary
shifts to multiply and divide, and comparisons such as equal to or greater than.

Control unit (CU)
Decodes instructions and sends signals to control how data moves around the parts of the CPU
and memory to execute these instructions.

Cache
Cache memory sits between the processor and main memory (RAM).

■ The CPU looks in the cache for required data.
■ If it is not there, it requests it from RAM.
■ The data is moved into cache before being accessed by the CPU.

Registers
Memory locations within the CPU that hold data. A register may hold an instruction, a storage
address or any kind of data. The data in registers can be accessed very quickly – even more quickly
than cache memory.

Von Neumann architecture
CPU architecture refers to the internal logical structure and organisation of the computer
hardware.
In Von Neumann architecture, data and instructions are stored in the same memory.
■ Program counter (PC): Stores the address of the next instruction to be processed.
■ Memory data register (MDR): Stores data fetched from memory or to be sent to memory.
■ Memory address register (MAR): Stores the address of the location in memory for data to

be fetched from or sent to.
■ Accumulator (ACC): Stores the results of any calculations carried out by the ALU.

1.1.2 CPU performance

How common characteristics of CPUs affect their performance
Clock speed: The CPU works at high speeds governed by the clock chip. The faster the clock the

more instructions that can be completed per second.
■ The clock uses a vibrating crystal that maintains a constant speed.
■ The clock chip operates at speeds of up to 4 GHz or 4 billion instructions per second.

9781510484160.indb 10 27/05/20 7:20 PM

11

RE
C

A
P

A
N

D
 R

EV
IE

W

Cache memory: Cache memory can be accessed very quickly by the CPU, so having more cache will
provide the CPU with fast access to more data.
Number of cores: If a CPU has multiple cores it may be able to process more instructions
simultaneously.

1.1.3 Embedded systems

Purpose and characteristics
■ An embedded system is a computer system that has been designed for a dedicated

function as part of a bigger system.
■ Embedded systems are often manufactured as a single chip.
■ The dedicated hardware and software make embedded systems more robust and reliable than

general-purpose computers.
Characteristics of embedded systems include:
■ Designed and engineered to perform a limited set of tasks to reduce size and improve

performance.
■ Programs are often uploaded at the manufacturing stage, directly to the device.

■ There are often very limited options to modify these programs.
■ Low power consumption to operate from a small power source.
■ Small in size to fit in portable devices.
■ Rugged so that they can operate in hostile environments.

■ Low cost making them suitable for mass-produced products.

Examples of embedded systems
Embedded systems are found in most consumer products such as:
■ washing machines
■ microwave ovens
■ home security systems
■ home heating controls
■ car engine management systems
■ set-top boxes
■ telephones
■ televisions
■ home security and control systems.

Extra resources

A free set of practice
questions accompanies
this section and is
available online at:
www.hoddereducation.co.uk/
OCRGCSEComputerScience

These practice questions
have not been produced
either by OCR or by the
OCR Principal Examiner.
They are also not endorsed
by OCR and have not been
subject to any OCR quality
assurance processes.

9781510484160.indb 11 27/05/20 7:20 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience
http://www.hoddereducation.co.uk/OCRGCSEComputerScience

12

1.
2

M
em

or
y

an
d

st
or

ag
e

For a computer system to be useful, it needs storage: storage
for data and programs that are currently in use and storage
for data and programs that can be accessed when required.

1.2.1 Primary storage –
memory

The need for primary storage
A computer system needs primary storage for any data
that it needs to access quickly. This includes the start-up
instructions, the operating system, programs that are running
and any associated data. There are two main types of primary
storage: RAM and ROM.

Random access memory
(RAM)
RAM is part of the main memory in a computer system, and
a typical laptop will have around 8 GB of RAM available. RAM
is required to hold the operating system, applications that are
running and any associated data while the computer is on
and in use.

When a program is loaded, it is copied from secondary
storage, such as a hard disk drive (HDD), into RAM. (For an
explanation of secondary storage see section 1.2.2.) Any data
associated with the program will also be stored in RAM so
that the CPU can access both the data and instructions.

Data is transferred into RAM from secondary storage for
use by the CPU. With more RAM available more data and
applications can be stored in it. Because RAM has fast data
access times this leads to better performance of the system. In
practice a system with more RAM can have more programs
open at the same time without any noticeable decrease in
performance

As noted in the previous chapter, once data and instructions
are in RAM they are then transferred to cache memory, in
order to further improve data access speeds for the CPU.
Figure 1.2.1 illustrates how access to data and programs is
improved by using RAM and cache together.

CHAPTER INTRODUCTION
In this chapter you will learn about:
1.2.1 Primary storage–memory
➤	 The need for primary storage
➤	 The difference between RAM and ROM
➤	 The purpose of ROM in a computer system
➤	 The purpose of RAM in a computer system
➤	 Virtual memory
1.2.2 Secondary storage
➤	 The need for secondary storage
➤	 Common types of storage
➤	 The advantages and disadvantages of different storage

devices
1.2.3 Units
➤	 The units of data storage
➤	 How data needs to be converted into a binary format

to be processed by a computer
➤	 Data capacity and calculation of data capacity

requirements
1.2.4 Data storage
➤	 Converting between denary, binary and hexadecimal
➤	 How to add two 8-bit binary integers together and

explain any overflow errors
➤	 Binary shifts
➤	 The use of binary codes to represent characters
➤	 Character sets, the relationship between the number

of bits per character and the number of characters in a
character set

➤	 How an image is represented as pixels and in binary
➤	 Image metadata
➤	 The effect of colour depth and resolution on image

quality and size
➤	 How sound can be sampled and stored in digital form
➤	 The effect of sample rate, duration and bit depth

sound quality and file size
1.2.5 Compression
➤	 The need for compression
➤	 Types of compression

1.2

MEMORY AND STORAGE

9781510484160.indb 12 27/05/20 7:20 PM

13

1.
2.

1
Pr

im
ar

y
st

or
ag

e
–

m
em

or
y

Secondary
storage

RAM
Cache

memory
CPU

Data access speeds increase

Figure 1.2.1 Data transfer speeds for secondary storage, main memory, cache and CPU

RAM is volatile, meaning it needs electrical power to operate. Any data stored in RAM is lost
when the power is turned off.

RAM can be read from or written to by the computer. This means RAM is read and write.

Read-only memory (ROM)
Typically, in a computer system, ROM stores the instructions and data needed to get the
system up and running and ready to load the operating system from secondary storage. This
special program stored on ROM is called the Bootstrap Loader and we say the process ‘boots’
the computer – this means that it starts it from scratch.

Computers would not be so useful if they had to be switched on all the time. ROM is non-
volatile memory, which means it does not require power to maintain its contents.

ROM is read-only. This means that the data stored in ROM is fixed and cannot be overwritten
once it is created. This data is written to ROM either at the manufacturing stage or through a
special process later on.

The difference between RAM and ROM
Table 1.2.1 A comparison of RAM and ROM

RAM ROM
Volatile and needs power to maintain the
content

Non-volatile and does not require power to
maintain the content

Read and write – data can be read from and
written to RAM by the computer

Read-only – the computer cannot overwrite its
content

Holds the operating system and any programs
and data currently in use by the computer

Holds the data and instructions required to start
up (boot) the computer

Knowledge check

1 State two differences between RAM and ROM.
2 What is held in RAM while the computer is working?
3 What is held in ROM on the computer?

9781510484160.indb 13 27/05/20 7:20 PM

14

1.
2

M
em

or
y

an
d

st
or

ag
e

Virtual memory
It is not always possible to store all the data and instructions we need in RAM. If a computer
is running complex programs processing large amounts of data – for example large images
or video files – or lots of programs are open simultaneously, there may be insufficient RAM
to hold them all. In this case the computer can allocate a section of secondary storage to
temporarily act like RAM. It does this by selecting data in RAM that is not currently required
by the CPU and moving it temporarily into secondary storage. Once that data is required by
the CPU, it is moved back from secondary storage into RAM.

The area of secondary storage used to temporarily store data from RAM is called virtual
memory.

Secondary storage
(free space)

Secondary storage
(free space)

Virtual
memory

RAM

RAM

Cache

CPU

Cache

CPU

Secondary
storage

(used space)

Secondary
storage

(used space)

Figure 1.2.2 Virtual memory

In the left-hand diagram there is only one program running which only takes up some of the
available RAM, and so the computer does not need to use virtual memory. In the right-hand
diagram, more data and programs are open and the computer has run out of RAM. It allocates
a section of secondary storage to act like RAM. This is represented by the orange section of
secondary storage and is called virtual memory.

Using virtual memory will affect the performance of the computer system because there is a
delay when transferring data from secondary storage back into RAM.

A computer with more RAM will need less virtual memory, reducing the number of data
transfers between RAM and secondary storage and therefore delivering improved performance.

9781510484160.indb 14 27/05/20 7:20 PM

15

1.
2.

2
Se

co
nd

ar
y

st
or

ag
e

Knowledge check

4 What is virtual memory and why is it needed?
5 How might installing more RAM affect the use of virtual memory and how might this

affect the performance of the computer?

1.2.2 Secondary storage

The need for secondary storage
Computer systems would be of little value if we lost all of our data and programs every
time we switched them off. We need to store the operating system, data, images, programs,
documents and various other files on our computers so that they are available the next time
we switch on the computer. This kind of data requires a lot of space so we need a low-cost,
high-capacity, read-and-write, non-volatile storage medium. This is known as secondary
storage. Secondary storage needs to keep data safe and must be robust and reliable.

A number of different secondary storage media can be used for a computer system and the
choice is based on several factors:

● Capacity: How much data does it need to hold?

● Speed: How quickly can the data be accessed?

● Typically access times to secondary storage are very slow compared to primary storage
(main memory).

● Portability: Does the data stored on the device need to be moved or transported?

● If so the size, shape and weight of the medium is important.

● Durability: How robust is the medium?

● Will it be damaged when moved around?

● Will it be used in a hostile environment subject to shocks or extreme conditions?

● Reliability: Does it need to be used over and over again without failing?

● Cost: What is the cost per GB of data stored?

● This is also an important factor where the media are being used to distribute data and
will not be reused.

● CDs for example only cost pennies but the cost per GB of storing data is higher than
that for a magnetic hard disk drive.

Knowledge check

6 Why do we need secondary storage?
7 What is stored on secondary storage in a computer system?

Magnetic storage
Magnetic storage uses the principle of magnetism to store data.

Hard disk drives (HDDs) are magnetic and are the most common type of secondary
storage.

9781510484160.indb 15 27/05/20 7:20 PM

16

1.
2

M
em

or
y

an
d

st
or

ag
e

Beyond the spec

HDDs are made of a stack of rigid disks (called platters) on a single spindle that rotates.
Each platter is coated in a magnetic material, which is effectively made up of billions
of separate tiny magnets that can either point ‘north’ or ‘south’. Each bit of data (see
section 1.2.3) is represented by these tiny magnets – north for ‘1’ and south for ‘0’. A set
of ‘heads’ moves across the platters, reading or writing data by sensing or changing the
north/south alignment of the magnets.

Figure 1.2.3 A hard disk drive showing the platters and heads

The magnetic hard disk is a reliable and cost-effective storage solution, providing high capacity
at low cost. This makes them an ideal choice for the typical laptop or desktop computer.
Internal and external hard disk drive capacities are currently measured in terabytes (a million
megabytes – see section 1.2.3). Large hard disk drives are, however, less portable than solid-
state drives or optical disks and are subject to damage if dropped or brought near to strong
electric or magnetic fields.

Several drives can be combined in larger commercial systems to provide a significant amount
of storage at a reasonable cost. At the other end of the scale, there are small portable hard disk
drives that can easily be moved between computers.

Figure 1.2.4 An external hard drive connected to a laptop

Another form of magnetic storage is magnetic tape, which is still used as a cheap way to
archive large amounts of data.

Tech term

Magnetic tape An old
storage medium that
lasts a long time and is
very cheap but has very
slow read/write times
and thus is only really
used for archiving.

9781510484160.indb 16 27/05/20 7:20 PM

17

1.
2.

2
Se

co
nd

ar
y

st
or

ag
e

Solid-state storage
Solid-state storage uses a technology called flash memory that has very fast data
access times compared to HDDs, largely because there are no moving parts. Flash memory
is, however, relatively expensive compared to hard disk drives and typically has lower capacity.

Solid-state storage is widely used for portable devices such as cameras (e.g. memory cards),
and comes in a range of physical sizes and capacities to suit a wide range of applications. These
portable devices, like USB pen drives, can be used to easily backup or transfer data between
devices.

Solid-state flash memory is also used as the basis for solid-state drives (SSDs). SSDs have
begun to replace magnetic hard disk drives (HDDs) because they have many advantages over
them:

● In order to read data, magnetic HDDs have to line up the correct portion of the disk with
the position of the read/write head. This means the magnetic disk has to rotate to the
correct position and the head has to move across the disk. This in turn means there is
a delay before data can be read or written. This delay is called latency. SSDs have lower
latency times because there are no moving parts and access to the data does not require a
platter to rotate or the read/write head to move. This improves access to the data and the
performance of the device.

● The lack of moving parts means that SSDs have much lower power requirements and do
not generate any heat or noise.

● HDDs can suffer from data being fragmented over the surface of the platters, producing
very slow access speeds. This is not the case with SSDs.

● SSDs are significantly lighter, smaller and thinner than HDDs, making them particularly
suitable for small, thin portable devices such as tablet computers or other portable devices.

● Since there are no moving parts, SSDs are not susceptible to problems caused by sudden
movements, making them ideal in hostile environments or in portable devices.

Given the expense of SSDs, they are often combined with a magnetic disk drive to form a
hybrid system. Frequently accessed data, such as the operating system, is stored on the SSD,
while large, less frequently required data is stored on the magnetic disk. This provides the
speed advantage of the SSD with the capacity advantage of the HDD at a reasonable cost
compared to high-capacity SSDs.

Figure 1.2.5 Various solid-state devices

Tech terms

Flash memory A
method of storing
data that is based on
electronics.

Latency A delay before
data can be transferred.

Fragmented Data
stored in different
physical locations across
the disk.

9781510484160.indb 17 27/05/20 7:20 PM

18

1.
2

M
em

or
y

an
d

st
or

ag
e

Optical storage
Data can also be stored by using the properties of light. Typical optical storage media
include CDs, DVDs and Blu-Ray disks. These are optical devices because they are written to
and read from using laser light.

Some optical storage media are read-only but others can be written to, by creating pits on the
surface of the disk using laser light.

For example, there are three main types of CD/DVD:

● CD/DVD-ROM: Read-only device with the data stored at the manufacturing stage.

● CD/DVD-R: Recordable media that can be written to once using a suitable drive.

● CD/DVD-RW: Rewriteable media that can be written to several times.

Typically, a CD will hold around 700 MB of data and cost pennies. They are used to distribute
data and programs or make semi-permanent copies of data.

The DVD is very similar to the CD, but it has a larger capacity of 4.7–8.5 GB. This means that
DVDs can store more data than CDs, such as standard resolution movies. A DVD has a faster
access time than a CD and costs a little more, but is still only pennies.

Blu-Ray is similar but with significantly larger capacity (25–50 GB) and much faster access
speeds. Blu-Ray disks can be used to store large amounts of data and the much higher access
speed makes them particularly suitable for high-resolution movies and console games. They
are slightly more expensive than DVDs but still reasonably inexpensive.

Table 1.2.2 Comparison of optical devices

Type CD DVD Blu-Ray
Typical cost 18p 60p–80p £1.80–£3.00
Capacity 700 MB 4.7 GB single layer

8.5 GB dual layer

25 GB single layer

50 GB dual layer

Choosing suitable secondary storage media
When choosing a suitable storage medium all of the following factors need to be considered.

● Capacity: How much data does it need to store?

● Speed: How quickly does the data need to be accessed?

● Portability: Does the device or medium need to be transported?

● If so the size and weight are important.

● Durability: Will the device or medium be used in a hostile environment?

● If so, the medium must be resistant to external shocks or extreme conditions.

● Reliability: Does it need to be used repeatedly without failing?

● Cost: What is the cost per unit of storage related to the value of the data?

Table 1.2.3 Capacity and cost of storage media

Media Capacity Typical cost Cost per GB
Magnetic hard disk Up to 15 TB A 2 TB HDD costs around £60

and a 10 TB drive about £300
3p

SSD 250 MB up to 2 TB £30 up to £300 for a 2 TB drive 15p
DVD 8.5 GB 80p 9p
Blu-Ray 50 GB £3.00 6p
CD 700 MB 18p 23p

Tech terms

Pit A tiny indentation
on a CD or DVD.

Land Areas on a CD or
DVD where there are no
pits.

Beyond the spec

The surface of each disk
is covered in billions
of small indentations,
known as pits and
lands. When laser light is
shone onto the surface
of the disk it reflects
off the pits and lands,
with each pit or land
representing a series of
zeros, and the transition
between pits and lands
representing 1.

9781510484160.indb 18 27/05/20 7:20 PM

19

1.
2.

3
U

ni
ts

The cost per GB varies. All optical media are able to store reasonably small files for pennies
per MB. For larger files, SSDs cost significantly more than HDDs for the same capacity. Larger
storage requirements can be met more cost-effectively by a magnetic hard disk drive.

Speed

An SSD can transfer data at around 200–550 MB per second. A magnetic HDD transfers data
at a much lower rate of 50–120 MB per second. An SSD will provide faster access to data. (For
reference, data transfer times for RAM are around 12–20 GB/s.)

Table 1.2.4 Access speeds of storage media

Storage type Data transfer rates (typical)
SSD 200–550 MB/s
Magnetic hard disk 50–120 MB/s
Blu-Ray disk 72 MB/s
DVD 1.32 MB/s
CD 0.146 MB/s

Table 1.2.5 Portability, durability and reliability

Media Portability Durability Reliability
SSD Small, with low power

requirements

Very portable

With no moving parts they
are not subject to damage
from sudden shocks.

The medium is reliable
and will hold data safely
for a very long time before
failure.

Magnetic
hard disk

With moving parts, higher
power requirements than
SSD. Available as external
drives powered from a USB

Subject to damage from
being dropped or from
exposure to magnetic
fields.

Ideal for medium term
storage with a reliable life
of 5–7 years. Motors and
heads are subject to failure
over time or from excessive
use or mishandling.

CD

DVD

Blu-Ray

Light and small

Very portable – can even
be sent through the post

Reasonably robust and
resistant to shocks

Easily damaged by
mishandling and scratches

CDs and DVDs will start to
fail after 10 years; Blu-Ray
will fail after 20 years.

Knowledge check

8 What are the advantages of solid-state storage over magnetic hard disks?
9 Why might a user choose magnetic hard disks over solid-state storage?

10 What is the most suitable medium for distributing high-definition video films?
11 Identify and describe three factors to consider when choosing secondary storage

media and devices.

1.2.3 Units

The units of data storage
A computer uses electronic circuits etched onto computer chips to store data and instructions.
These circuits contain electronic switches made from tiny transistors. Each switch can be in
one of two states: on or off. The two states are represented by the numbers 1 or 0. A computer
uses combinations of these 1s and 0s to represent data and instructions.

9781510484160.indb 19 27/05/20 7:20 PM

20

1.
2

M
em

or
y

an
d

st
or

ag
e

There is a number system that only uses the two values 1 and 0. It is called the binary number
system and it is used to describe the on/off status of all the switches in a computer. One binary
digit is called a bit, and the symbol for this is b. Computers often group 8 bits together as one
unit of data. These 8 bits together are called a byte, with the symbol B.

4 bits grouped together are called a nibble, which has no symbol.

In standard scientific notation the prefix ‘kilo’ means 1000 – for instance 1 kilometre is 1000
metres. We use kilo, and a whole set of other units, based on this scientific notation.

8 bits (b) 1 byte (B)
1000 B 1 kilobyte (KB)
1000 KB 1 megabyte (MB)
1000 MB 1 gigabyte (GB)
1000 GB 1 terabyte (TB)
1000 TB 1 petabyte (PB)

Worked example

For example, if we have a file that is 2.5 MB, what is that in bytes?

2.5 MB = 2.5 × 1000 × 1000 or 2 500 000 bytes

Knowledge check

12 How many kilobytes are there in 4.5 gigabytes?
13 How many gigabytes are there in 32 terabytes?

Data capacity calculations
As discussed, a computer works in binary because the billions of tiny switches that make up
its circuits can only be on or off, which is represented by 1s and 0s. This means that all data
needs to be converted into binary so that a computer can work with it. In section 1.2.4 we will
describe how that conversion is done for sound, but for now we will look at typical file sizes for
a range of file types, measured in bytes.

The choice of media to use is often governed by the number and type of file to be stored. The
format used to store the file can also make a significant difference. For example, a document
with just 250 characters saved as plain text, rich text or a Word document takes from 251 bytes
up to 12 KB depending on how it is saved.

Figure 1.2.6 A 250-character file saved in different formats

Beyond the spec

In some sources, you
will find people referring
to one kilobyte as 1024
bytes, one megabyte
as 1024 kilobytes and
so on. However, there
are different prefixes for
this – for example, 1024
bytes is called 1 kibibyte.
(1024 might seem like
a strange number but
it is used because it is a
‘neater’ number when
written in binary.)

Key point

You should use multiples of
1000 in the exam. However,
if you do use 1024 for
calculations in the exam,
you will not be penalised.

9781510484160.indb 20 27/05/20 7:20 PM

21

1.
2.

3
U

ni
ts

We can estimate how much space we require based on typical or estimated file sizes. For
example:

File type Approximate size
1-page word-processed document with no images 100 KB
Postcard size photograph 6 MB
3-minute MP3 music track 6 MB
3-minute music track on a commercial CD 50 MB
1-minute MPEG video 50 MB
DVD film 4 GB
High-definition film 8–15 GB
Blu-Ray film 20–25 GB
4 k high-resolution film 100 GB or more

We are only estimating the sizes and need to make some allowance for small variations and
file metadata. In our example below, we will allow 10% extra when calculating the size of the
medium required to store data, however it is not a requirement for you to do so in your exam.

Tech term

Metadata Data
associated with a file that
are used to reconstruct
the original document,
image or sound.

Worked example

If we need to store 5 minutes of MPEG video, 30 minutes of MP3 music and 5 postcard
sized photographs, we can estimate the size as:

5 minutes of video @ 50 MB per minute

= 5 minutes x 50 MB per minute

= 250 MB

30 minutes of MP3 music @ 50 MB per 3 minutes

First, we have to work out how many 3-minute MP3s make up 30 minutes:

= 30 minutes / 3 minutes = 10

The total storage required is:

= 10 × 50 MB

= 500 MB.

5 postcard sized images @ 6 MB each

= 5 × 6 MB

= 30 MB.

Total space

= 250 + 500 + 30

= 780 MB.

10% extra for metadata

= 0.1 × 780 MB

= 78 MB

TOTAL SPACE REQUIRED

= 780 MB + 78 MB

= 858 MB

858 MB is too big to fit on a standard CD but will fit onto a standard DVD or perhaps a
small solid-state device.

9781510484160.indb 21 27/05/20 7:20 PM

22

1.
2

M
em

or
y

an
d

st
or

ag
e

Knowledge check

14 How much space is needed to store 200 postcard sized images and 60 minutes of MP3
music?

15 How much space is needed to store 40 pages of word-processed documents and 15
postcard sized images? What medium would be most appropriate to distribute these files?

1.2.4 Data storage

NUMBERS
We have already established that computers use switches to store and process data and that
these switches have just two states, either 1 (on) or 0 (off). 1 and 0 are the two numbers in
the binary number system. This means that, in a computer, all data (numbers, characters,
sounds and images) are represented in binary. Before we look at how this is done, we need to
understand the concept of binary numbers.

In the denary (or decimal) system we are used to using 10 symbols or values: 0,1,2,3,4,5,6,7,8,9.
We use these symbols to write numbers.

For example: the number 527 is made up of

5 lots of 100,

2 lots of 10,

7 lots of 1.

Written into a table this can be seen more clearly:

100s 10s 1s
5 2 7

The column values are ten times larger than the previous value as we move from right to left;
that is, the ‘hundreds’ are ten times bigger than ‘tens’ and ‘tens’ are ten times bigger than ‘ones’.

In binary we just have the two symbols or values, 0 and 1. This means that in the binary number
system each column heading is twice as big as the previous one as we move from right to left:

128 64 32 16 8 4 2 1

The column headings in binary, from right to left, are ‘ones’, ‘twos’, ‘fours’, ‘eights’ and so on.

The leftmost digit in a binary number is called the most significant bit (MSB) and the
rightmost digit the least significant bit (LSB). In an 8-bit number, the MSB has decimal
value 128 and the LSB has decimal value 1.

9781510484160.indb 22 27/05/20 7:20 PM

23

1.
2.

4
D

at
a

st
or

ag
e

Worked example

What is the binary number 100111 in denary?

First, copy the binary number 100111 into the table, always ensuring that you fill the table
from the right. (There should always be a value (0 or 1) in the ‘1’ column.)

128 64 32 16 8 4 2 1
1 0 0 1 1 1

We have:

1 lot of 32, no lots of 16, no lots of 8, 1 lot of 4, 1 lot of 2 and 1 lot of 1

This is equal to:

32 + 4 + 2 + 1 = 39

100111 in binary is 39 in denary.

Key point

You are expected to be
able to work with binary
numbers with up to eight
digits, but also with values
containing fewer than eight
digits.

Worked example

Convert the denary number 142 into binary.

Is 128 smaller than 142? YES it is, so we record 1 in the first column from the left-hand side.

128 64 32 16 8 4 2 1
1

We subtract 128 from 142, to leave a remainder of 14.

We now check 14 against the next column value, 64. 64 is not smaller than 14, so we record
0 in the second column.

128 64 32 16 8 4 2 1
1 0

We continue to check 14. We can see that 32 is not smaller than 14, and neither is 16, so we
can record 0s in the next two columns.

128 64 32 16 8 4 2 1
1 0 0 0

We find that 8 is smaller than 14, leaving a remainder of 6, and so we put a 1 in the column
under 8.

We now check 6 against the next column value.

To convert denary numbers into binary, we use the binary column heading values from the
table. We decide whether each column heading value, starting at the left-hand side, is smaller
than or equal to our decimal number. We record 0 if it is not smaller and then compare it with
the next column value.

If it is smaller than or equal to, we record 1 in the table, subtract the number and work out the
remainder. We take that remainder and then check if it is smaller than the next column value,
and repeat the process above. We continue this process until we are left with the right-hand
‘1’ column.

How to convert positive denary whole numbers
into 8-bit binary numbers and vice versa
Using the table for binary, we can use the same approach as for denary numbers to calculate
the denary equivalent of a binary number.

A worked example will make this clearer.

9781510484160.indb 23 27/05/20 7:20 PM

24

1.
2

M
em

or
y

an
d

st
or

ag
e Knowledge check

16 Convert the following binary numbers to
denary.
(a) 1001
(b) 11101
(c) 110001
(d) 10001100
(e) 11011011
(f) 11111100

17 Convert the following denary numbers to
binary.
(a) 20
(b) 46
(c) 75
(d) 98
(e) 147
(f) 213

4 is smaller than 6, leaving a remainder of 2. We put a 1 in the column under 4 and now
check 2 against the next column value.

2 is equal to 2, leaving a remainder of 0, so we put a 1 in the column under 2.

We have been left to check the number 0 against the last column. 1 is not less than or equal
to 0, so the final entry is a 0 under the 1 column.

The final table looks like this:

128 64 32 16 8 4 2 1
1 0 0 0 1 1 1 0

We can check our answer by converting the binary number 10001110 back into denary. We
find that:

10001110 = 128 + 8 + 4 + 2 = 142

We have confirmed that 10001110 is indeed the denary number 142.

Key point

You need to show
your working in the
examination so using a
table and showing the
key subtractions will
demonstrate clearly how
you arrived at the answer.

Worked example

Convert 83 into binary.

We follow the same process as before. 128 is not smaller than 83 so the 128 column entry is 0.

64 is less than 83, so we enter a 1 in the column under 64. We also note that 83 – 64 = 19
and we will now check 19 against the next columns.

The next column that is less than 19 is 16, so we enter 0 in the 32 column and 1 in the
16 column.

We then note that 19 – 16 = 3 and we will now check 3 against the next columns.

The next column that is less than 3 is the 2 column. So we enter a 1 in the 2 column and
note that 3 – 2 = 1. We check this 1 against the 1 column, and 1 is of course equal to 1. So
we enter a 1 in the final column.

So, the binary number is:

128 64 32 16 8 4 2 1
0 1 0 1 0 0 1 1

We can check our answer by converting 01010011 back into denary. We find that:

01010011 = 64 + 16 + 2 + 1 = 83

We have confirmed that 01010011 is indeed the denary number 83.

Note that whilst we only really need 7 bits to represent this binary value, we need to keep the
leading 0 for the computer since it uses a fixed number of bits. However, when we write down these
values on paper we can leave the column for 128 blank and write down the answer as 1010011.

9781510484160.indb 24 27/05/20 7:20 PM

25

1.
2.

4
D

at
a

st
or

ag
e

When adding binary numbers we follow the same process. The difference is that as soon as a
column adds up to a number bigger than 1, we have to carry.

We also need to note that:

1 + 1 = 10 in binary (that is 1 + 1 = 2 which is written as 10 in binary)

1 + 1 + 1 = 11 in binary (that is 1 + 1 + 1 = 3 which is written as 11 in binary)

Let’s look at an example adding 1101 and 1111.

Worked example

1 1 0 1

+ 1 1 1 1

1 1 0 1

+ 1 1 1 1

0
1

1 + 1 is 10 in binary so we write down 0 and carry
1 to be added in the next column. This carry is
written in the next column under the line.

0 + 1 + 1 is 10 in binary so we
write down 0 and carry 1 to be
added in the next column.

Worked example

Adding 357 and 264

3 5 7

+ 2 6 4

3 5 7

+ 2 6 4

1
1

3 5 7

+ 2 6 4

2 1
1 1

3 5 7

+ 2 6 4

6 2 1

So, the key thing to remember is that as soon as a column adds up to a number bigger than
0–9, we have to carry.

7 + 4 = 11

So we write down 1 and carry 1 to be added in the next
column. The carry is written in the next column under the line.

5 + 6 + 1 = 12

So we write down 2 and carry 1
to be added in the next column.

3 + 2 + 1 = 6

So we write down 6.

How to add two 8-bit binary integers and
explain overflow errors which may occur
Adding binary numbers is very similar to the way we add denary numbers. Let’s look at the way
we add two denary numbers.

9781510484160.indb 25 27/05/20 7:20 PM

26

1.
2

M
em

or
y

an
d

st
or

ag
e

In the worked example we added together two 4-bit numbers and ended up with a 5-bit
number. This is a problem if we can only store 4-bit numbers.

Overflow errors
If we are working with 8-bit numbers and all we can store is 8 bits, the following problem might
occur.

For example, if we add these two 8-bit numbers:

1 1 0 0 0 1 1 0

+ 1 1 1 0 0 0 1 1

1 0 1 0 1 0 0 1
1 1 1

The carried 1 in the left-hand column would be the ninth digit in our answer, but we are
limited to 8 bits. This carry is lost, which means we have an overflow error.
In this example, we tried to add 11000110 (198 in denary) and 11100011 (227 in denary).

198 + 227 = 425 in denary. The answer produces an overflow error because we needed a 9th
bit. Without a 9th bit that information is lost, giving an incorrect answer of 10101001 in binary,
which is 169 in denary.

The largest value we can store in 8 bits is 11111111, or 255 in denary. So the reason for the
overflow error is that 425 is too large a number to store in 8 bits.

Knowledge check

Complete the following additions in binary

18 1100 + 110
19 1011 + 1001
20 110011 + 100111
21 110110 + 111011
22 10100111 + 10110
23 11001100 +11111
24 Explain what happens when you add 11100011 and 10001110.

1 1 0 1

+ 1 1 1 1

0 0
1 1

1 1 0 1

+ 1 1 1 1

1 0 0
1 1 1

1 1 0 1

+ 1 1 1 1

1 1 1 0 0
1 1 1 1

1 + 1 + 1 is 11 in binary so we
write down 1 and carry 1 to be
added in the next column.

1 + 1 + 1 is 11 in binary so we
write down 1 and carry 1 to be
added in the next column.

The carried 1 is the final
digit in the sum giving the
answer 11100.

9781510484160.indb 26 27/05/20 7:20 PM

27

1.
2.

4
D

at
a

st
or

ag
e

Binary shifts
Moving the digits in a binary number left or right is called a binary shift.
Each time the value is shifted one place to the left, the number is multiplied by 2.

For example, 40 in binary is 101000:

128 64 32 16 8 4 2 1

1 0 1 0 0 0

If we shift the digits one place to the left, and add 0 to the right-hand 1 column, we get:

128 64 32 16 8 4 2 1

1 0 1 0 0 0 0

The original number that has been moved one place to the left has been highlighted.

In denary this new number has the value 64 + 16 = 80. This is 40 multiplied by 2.

If we shift another place to the left – which is two places to the left from the original number
– we get:

128 64 32 16 8 4 2 1

1 0 1 0 0 0 0 0

In denary this new number is 128 + 32 = 160. This is the original number 40 multiplied by 4.

If we shift this number one more place to the left we get:

128 64 32 16 8 4 2 1

0 1 0 0 0 0 0 0

The most significant bit (MSB) was 1 and will be lost. This results in the number 64 being
stored. This is an overflow error.

Each time the value is shifted one place to the right the number is divided by two.

Starting again with the number 101000, if we shift the digits one place to the right we get:

128 64 32 16 8 4 2 1

1 0 1 0 0

In denary the new number 10100 is 16 + 4 = 20, which is 40 divided by 2.

If we shift another place to the right we get:

128 64 32 16 8 4 2 1

1 0 1 0

In denary this is 8 + 2 or 10, which is the original number 40 divided by 4.

So far, the digits we have lost from the original number 101000 have been zeroes. However, if
the least significant bit (LSB) is a 1 and we lose it, this causes a loss of precision.

For example, if we shift the original number 101000 to the right by 3 places, we get:

128 64 32 16 8 4 2 1

1 0 1

The least significant bit is now ‘1’.

9781510484160.indb 27 27/05/20 7:20 PM

28

1.
2

M
em

or
y

an
d

st
or

ag
e

If we now shift this number to the right by one place, we get:

128 64 32 16 8 4 2 1

1 0

In denary, this is 2. We have binary shifted the original number four places to the right, which
means that we have divided the original number by 16 (because 2 × 2 × 2 × 2 = 16). But 40
divided by 16 = 2.5.

We have a loss of precision. This is because the LSB in the last binary shift was a 1, which we lost.

Note that loss of precision and overflow errors only occur when the MSB or LSB is a 1.

Knowledge check

Apply the shifts described using 8 bits to the following binary numbers and state the denary
equivalents before and after the shift. Comment on what has happened to the value.

25 1100 shift 2 places to the right
26 11010 shift 1 place to the left
27 101 shift 3 places to the left
28 110000 shift 3 places to the right
29 111 shift 4 places to the left
30 10000000 shift 4 places to the right
31 110011 shift 4 places to the left
32 111 shift 2 places to the right

How to convert positive denary whole numbers
into two-digit hexadecimal numbers and vice
versa
Computer scientists use another number system called hexadecimal (or hex for short).
Hexadecimal is a base-16 number system, so it requires 16 separate symbols. It uses 0–9 for the
first ten symbols, just like denary. However, it requires extra symbols to represent the denary
numbers 10 to 15. It uses the letters A through to F for this purpose.

Base 10
(denary)

Base 2
(binary)

Base 16
(hex)

0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

9781510484160.indb 28 27/05/20 7:20 PM

29

1.
2.

4
D

at
a

st
or

ag
e

The column values for base 16 (hex) are based on multiples of 16 so the first two columns are:

16 1

To convert denary numbers to hexadecimal we:

● Check if 16 will divide into the number.

● If it does, we write down how many times using the correct hexadecimal symbol in the 16s
column.

● We then convert the remainder into its hexadecimal symbol and write it in the 1s column.

Worked example

Convert 189 in denary to hexadecimal.

189 divided by 16 = 11 remainder 13

The hex symbol for 11 is B

The hex symbol for 13 is D

189 in denary is BD in hexadecimal

You can check this: 11 × 16 = 176,
and 189 − 176 = 13

To convert hexadecimal numbers to denary we:

● Convert the individual symbols to their denary equivalent.

● Multiply the denary values by the column values – either 16 or 1.

● Add the results.

Worked example

To convert AF in hexadecimal to denary

16 1

A F

A is equivalent to 10 and F is equivalent to 15 in denary.

(10 × 16) + (15 × 1) = 175

AF in hexadecimal is 175 in denary.

Knowledge check

33 Convert the following denary values to
hexadecimal
(a) 52
(b) 67
(c) 165
(d) 191
(e) 201

34 Convert the following hexadecimal
numbers to denary
(a) 12
(b) 58
(c) 5D
(d) AE
(e) CA

9781510484160.indb 29 27/05/20 7:20 PM

30

1.
2

M
em

or
y

an
d

st
or

ag
e

How to convert from binary to hexadecimal
equivalents and vice versa
The binary number 11011000 can be represented in hexadecimal as D8. This is far easier for
programmers to use, remember and communicate without introducing errors. So, hexadecimal
is used by programmers because it is simple to work with and easy to convert to and from
binary.

Programmers often work with bytes, which are 8-bit numbers – for example 11001110. They
would like to represent this number using just two hexadecimal digits. So, first they split it
into two 4-bit numbers: 1100 and 1110. As we have already seen, 4-bit numbers are known
as nibbles.

4-bit numbers can represent 16 different values – from 0000 up to 1111 in binary, which is 0 to
15 in denary. Hence any 4-bit number can be represented by just one hexadecimal number 0–F.

To convert binary to hexadecimal, all we do is separate the binary into nibbles and look up the
equivalent symbol.

Worked example

Convert 11001110 in binary to hexadecimal.

The binary number is divided into two nibbles and the equivalent hexadecimal symbol
identified. This can be done by first converting the binary to denary if necessary. You can
use the table given in the previous section.

1100 1110

C E

11001110 in binary is CE in hexadecimal.

If we have a number with fewer than 8 bits, the same process applies. We split up the number
into nibbles, starting from the right-hand side.

Worked example

Convert the binary number 1011101 to hexadecimal.

101 1101

5 D

1011101 in binary is 5D in hexadecimal

We use a similar process to convert between hexadecimal and binary: we replace the hex
symbol with the equivalent binary nibble. You can convert hex to decimal first if that is easier,
or you can use the table given at the beginning of this section.

Worked example

Convert B8 in hexadecimal to binary.

B 8

1011 1000

B8 in hexadecimal is 10111000 in binary.

9781510484160.indb 30 27/05/20 7:20 PM

31

1.
2.

4
D

at
a

st
or

ag
e

Worked example

Convert 3A from hexadecimal to binary.

3 A

11 1010

3A in hexadecimal is 111010 in binary.

Knowledge check

35 Convert the following binary numbers to
hexadecimal.
(a) 10011100
(b) 110011
(c) 11111111

36 Convert the following hexadecimal
numbers to binary.
(a) 95
(b) AB
(c) 1D

CHARACTERS
Using binary codes to represent characters
When you press the keys on a keyboard, the computer registers this as a binary code to
represent each character. This code can then be used to identify and display a character on
screen or for printing. It is important for systems to agree on these codes and their meanings
if the data is to make any sense. There are agreed international standards that are used to
represent the character set for a computer system.

Character sets and bits per character
The character set of a computer is all the characters that are available to it. The number
of characters in the character set depends upon how many characters can be represented by
the associated codes. The first agreed standard was based on contextual messages in English
with a limited number of extra symbols. Wider use of computers, and the need for many more
languages and other symbols, has led to the development of more advanced coding standards
for character sets.

ASCII

In 1960, the American Standards Association agreed a set of codes to represent the main
characters used in English. This is called ASCII (American Standard Code for Information
Interchange). This system was designed to provide codes for the following:

All the main characters, i.e. 26 uppercase and 26 lowercase 52 characters

All the numeric symbols 0–9 10 characters

32 punctuation and other symbols plus ‘space’ 33 characters

32 non-printable control codes 32 characters

In total, this is 127 characters, or in binary 1111111 (7 bits). Initially, the ASCII character set used
127 codes for the characters, with 0 meaning ‘no character’. This gave a total of 128 characters.

One additional bit was used for error checking purposes. This meant there were 8 bits overall,
and that each character required one byte.

Key point

You will be expected to
work with and convert
between all three number
systems in the range:

00–FF in hex

0–255 in denary

00000000–11111111 in
binary.

(d) 111001
(e) 1001110

(d) A3
(e) 56

9781510484160.indb 31 27/05/20 7:20 PM

32

1.
2

M
em

or
y

an
d

st
or

ag
e

Some ASCII codes are:

Binary Hex Denary Character
0100000 20 32 ‘space’
1000001 41 65 A
1000010 42 66 B
1000011 43 67 C
1100001 61 97 a
1111001 79 121 y
1111010 7A 122 z
1111111 7F 127 ‘delete’

Extended ASCII

As the need for more characters became necessary, including non-English characters and
mathematical symbols, the extended ASCII set used the full 8 bits in the byte to represent
another 128 characters, making the available character set 256, rather than the original ASCII
limit of 128.

Unicode

Unicode was developed to use 16 bits rather than a single byte. This provided the ability
to store 216 or 65 536 unique characters. Later developments of Unicode use more bits to
represent billions of different characters, including graphical symbols and emojis.

To ensure compatibility of all of these systems, the original ASCII and extended ASCII character
codes are the same within Unicode. ASCII is considered a subset of Unicode.

The ASCII codes for the main alphabetic characters are allocated to the uppercase characters
in sequence, followed by the lowercase characters in sequence. ‘A’ is 65 and ‘B’ is one more at
66, and so on. Lowercase characters start with ‘a’ as 97 and this means that when we sort text,
‘Z’ comes before ‘a’.

For example, if the following animals written as Goat, Bear, ape, Zebra, deer are sorted using
ASCII values, they will be in the order:

Bear, Goat, Zebra, ape, deer

Character set Number of bits Number of characters Examples
ASCII 7 128 Upper and lowercase, numbers,

punctuation, some control characters
Extended
ASCII

8 256 As above plus non-English characters
and mathematical symbols

Unicode 16/32 bits 65 000/2 billion + As above plus all known language
characters and different characters
including graphical symbols and
emojis

The size of a text file can be calculated by taking the number of characters and multiplying this
by the number of bits per character.

Worked example

For example, a text file with 100 characters stored in 32-bit Unicode

100 × 32 = 3200 bits

Dividing by 8 we get 400 bytes

There may be a small overhead to include the metadata, typically we add 10% to be on the
safe side, but in this case 400 B would be a reasonable estimate.

9781510484160.indb 32 27/05/20 7:20 PM

33

1.
2.

4
D

at
a

st
or

ag
e

Most images are far more complex than this. For instance, the simple black and white drawing
in Figure 1.2.8a is 100 × 152 pixels. This requires 15 200 bits to store it, which is 15 200 / 8 =
1900 bytes, or just under 2 kilobytes. The screenshot in Figure 1.2.8b shows just a small section
of the data that is being stored for this image. Like all data, the image is ultimately stored as a
series of binary numbers.

When we look at colour images, we need to store more than just a 1 or 0 for each pixel; we
need to be able to store enough data to represent a range of colours.

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 1 1 1 1 1 1 0

1 1 0 0 0 0 1 1

1 1 1 1 1 1 1 1

1 0 1 0 0 1 0 1

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

Figure 1.2.7 A simple black and white image

Figure 1.2.8a and Figure 1.2.8b A black and white image and the data that is being used to store it

IMAGES
How an image is represented as a series of
pixels and in binary
A simple image can be made up of black or white blocks. Binary numbers can represent these
black and white blocks, using 1 for black and 0 for white. The image in Figure 1.2.7 uses 8 bits,
i.e. 1 byte, to represent each row. Those blocks are the smallest element of an image and are
called pixels.

This image is just 8 pixels wide by 8 pixels high. As each row is represented by one byte, this
image requires 8 bytes to store it.

9781510484160.indb 33 27/05/20 7:20 PM

34

1.
2

M
em

or
y

an
d

st
or

ag
e

If we want to store four colours, we need to represent each pixel as one of four different values.
We can use 2 bits to do this with the values: 00, 01, 10 and 11. The colour of each pixel will be
represented by one of these four binary codes.

So with 2 bits, we can store 22 or four colours.

If we use more bits to represent each pixel, we can represent more colours:

With 3 bits per pixel we can store 23 or eight colours. (In binary, these eight codes are: 000, 001,
010, 011, 100, 101, 110, 111.)

With 8 bits per pixels we can store 28 or 256 colours.

With 16 bits per pixel we can store 216 or 65 536 colours.

The number of bits used to represent the colours is often referred to as the colour depth. The
more colours we have, the more data we need to store for each pixel.

Metadata
As we have already seen, image data is stored as a series of numbers. In order to display the
image accurately, the computer needs to know exactly how to interpret the numbers. This
information about the image is called metadata.

Figure 1.2.9 Image of a sign in Portmeirion

Figure 1.2.10 Metadata stored for this image of the sign in Portmeirion

Metadata includes information such as:

● the number of bits per pixel (the colour depth, as discussed in the previous section)

● the size of the image in bits

● the resolution of the image in dots per inch (DPI).

This information is used to reproduce the image accurately from the data stored.

9781510484160.indb 34 27/05/20 7:20 PM

35

1.
2.

4
D

at
a

st
or

ag
e

The effect of colour depth and resolution
Colour depth is the number of bits used per pixel. The more bits per pixel, the larger the
range of colours we can have in the image. The more colours we have available, the better the
representation of the image.

Look at the image of a sign in Portmeirion in Figure 1.2.11. The original image has a bit depth
of eight, which is 28 or 256 colours, and it is 1.2 MB in size. As we reduce the number of colours
available, the image become less well defined but the size of the file reduces, to 787 KB for
eight colours and 542 KB for four colours.

The more colours we have, the more bits per pixel we need, and the more data we have to
store. Consequently, the higher the colour depth, the larger the file needed to store the image.

Figure 1.2.11 The same image with eight colours and with just four colours

The resolution of an image is the number of pixels per unit of distance – usually referred to
as dots per inch (DPI). The more dots per inch, the greater the detail stored. This enables us to
enlarge the image more without it becoming pixelated. However, the more dots or pixels per
inch, the more data we need to store – and this means the image file is larger.

Greater colour depth and higher resolution result in higher quality images, but at the expense
of larger file sizes. To calculate the size of an image file, we need to know the colour depth and
the width and height in pixels:

File size = colour depth × image height (pixel) × image width (pixel)

Worked example

For example, an 8-bit image that is 1200 pixels high and 2000 pixels wide:

File size = 8 × 1200 × 2000

= 19 200 000 bits

In bytes this is:

= 19 200 000 / 8

= 2 400 000 B

= 2.4 MB

Once again, we would add 10% to account for overheads, including the metadata, to get:

2.4 + 0.24 = 2.64 MB

We could round this to 2.6 MB for our estimate.

Tech term

Pixelated Blocky

9781510484160.indb 35 27/05/20 7:20 PM

36

1.
2

M
em

or
y

an
d

st
or

ag
e

Knowledge check

37 How does the resolution of the image affect the size of the file used to store it?
38 How does the resolution of the image affect the quality of the image?
39 What do we mean by colour depth?
40 How does reducing the colour depth affect the image?
41 How many colours can be represented using a 4-bit colour depth?

SOUND
Sound is a series of vibrations that move through air as waves. These vibrations continuously
vary and can take any value, which means they are analogue. To store sound on a computer,
we need to convert this continuous analogue data into discrete digital data. To do this, we
convert the analogue data into binary numbers.

How sound can be sampled and stored in
digital form
The continuously varying sound wave is sampled at set time intervals. Each sample is a
snapshot of the sound wave, represented by discrete digital values that can be stored by a
computer. In Figure 1.2.12, the x-axis represents time. The vertical y-axis represents the amount
(or amplitude) of vibration. At each time interval, the sound is sampled and the amount of
vibration is measured and stored as a digital value.

From the graph, we can read the corresponding amplitude for the curve at each sample point.
The first few are shown in the table.

Notice that in the example the amplitude of vibration can only be stored to the nearest ten
and the sampling is only done once per second. When the computer uses these values to
recreate the sound, we get a shape in Figure 1.2.13 that is similar to the original but not as
smooth and missing a lot of the detail. In this case the sampled sound will not be an accurate
version of the original sound.

X Y

1 30

2 50

3 30

4 10

5 0

6 30

80

70

60

50

40

30

20

10

0
0 2 4 6 8

Time

A
m

ou
nt

 (a
m

pl
itu

de
) o

f
vi

br
at

io
n

10 12 14 16

Figure 1.2.12 Sound is sampled at set time intervals

Tech term

Discrete Individual
distinct values.

9781510484160.indb 36 27/05/20 7:20 PM

37

1.
2.

4
D

at
a

st
or

ag
e

80

70

60

50

40

30

20

10

0
2 4

A
m

ou
nt

 (a
m

pl
itu

de
) o

f
vi

br
at

io
n

6 8 97
Time

531 10 12 14 16151311

Figure 1.2.13 Digital sound replayed by the computer

Factors affecting playback quality and size of
sound file
The sample rate is the number of samples taken per second usually measured in hertz (Hz).
One sample per second = 1 Hz. A typical commercial CD contains music sampled at 44.1 kHz
(44 100 samples per second).

If we sample more frequently, we will get a better approximation of the original sound.
However, each sample requires a certain amount of data, so more samples means a larger file
to store the data.

The bit depth is the number of bits used to store each sampled value. The more bits we
use, the more accurately we can represent the data for that sample point, providing a better
representation of the original sound. However, the more bits we use to store each data point,
the larger the file needed to store the data. A typical CD recording has a bit depth of 16 –
which means 16 bits are used for each sample. This means that the analogue data can take one
of 216 = 65 536 different digital values.

In Figure 1.2.14, the original sound wave has been sampled again, but this time there are twice
as many samples per second and the bit depth has increased so that now the amplitude of
vibration can be measured to the nearest ‘1’. You can see how much more accurate this sample
is than the one in Figure 1.2.13, when compared to the original.

80

70

60

50

40

30

20

10

0
2 4 6 8 9

Time

A
m

ou
nt

 (a
m

pl
itu

de
) o

f
vi

br
at

io
n

7531 10 12 14 16151311

Figure 1.2.14 Higher sample rates and bit depths produce a better approximation of the original

9781510484160.indb 37 27/05/20 7:20 PM

38

1.
2

M
em

or
y

an
d

st
or

ag
e

The duration of the sampling is how many seconds of sound are sampled. The more seconds
of sound that are sampled, the more data we need to store and the larger the file needed to
store that data.

The size of the file needed to store sound data depends on these four factors:

● sample rate

● duration

● bit depth

● number of channels.

Size of file = sample rate × duration × bit depth × number of channels

Worked example

A sample of a sound is made at 44.1 kHz for 1 minute at a bit depth of 16 bits. Calculate the
size of the resulting sound file.
44.1 kHz means 44 100 samples per second. Each sample consists of 16 bits. So, the number
of bits per second
= 44 100 × 16
= 705 600 bits per second.
The sample lasts for 60 seconds, so the total number of bits
= 705 600 × 60
= 42 336 000 bits
Divide by 8 to get the number of bytes:
= 42 336 000 / 8
= 5 292 000 bytes
Divide by 1 000 000 for megabytes:
= 5 292 000 / 1 000 000
= 5.29 MB
With audio files, the overheads, including the metadata that describes the data, are small
and rounding to 5.3 MB would provide a good estimate of the file size.
This calculation is for a recording on one track, which is called mono. A stereo recording
uses two tracks and uses twice as much data as a mono recording. In the example above, a
stereo recording would use 5.29 × 2 = 10.58 MB.

Knowledge check

42 What is meant by bit depth?
43 How does the sample rate affect the sound quality and the file size of the file used to

store the sampled sound?

9781510484160.indb 38 27/05/20 7:20 PM

39

1.
2.

5
Co

m
pr

es
si

on

1.2.5 Compression

The need for compression
As we have seen, storing images and sound can lead to large file sizes. When large amounts
of data are transmitted across the internet, for example sending videos, it can be very slow
and may be expensive. If we want to store lots of data on a device with limited memory, for
example music and videos on a mobile phone, we might run out of space. However, we can
compress data to make the file smaller. This reduces transmission times between devices and
allows more files to be stored.

Types of compression
There are two types of compression – lossy and lossless.

Lossy

Lossy compression is where some data is permanently removed to make the file smaller.

Figure 1.2.15 The same image compressed to 364 KB and to 166 KB

9781510484160.indb 39 27/05/20 7:20 PM

40

1.
2

M
em

or
y

an
d

st
or

ag
e

The removed data is chosen as that least likely to be noticed by the human senses. For
example, certain frequencies of sound are inaudible or barely audible to the human ear, so
these frequencies can be discarded without any significant differences being heard. In images,
large areas of very similarly coloured pixels are combined into one block of the same colour, so
that the image still looks very similar to the original.

In Figure 1.2.15, you can see that there is some loss of detail in the second image but the
essential features of the original image are still clearly visible.

It is important to note that once a file has been compressed using lossy compression
techniques, it cannot be reversed and restored to its original condition.

Lossless

For some files, losing any information is simply not possible – for example, computer programs
will only work if all the instructions are present. In text files, removing any of the words or
characters would alter the sense of the document. For these files lossy compression techniques
are not suitable. However, there are other techniques for compressing files without losing any
of the original information. This is called lossless compression. It involves storing enough
data and information to be able to recreate the original file exactly as it was before compression.

For text files, lossless compression can be achieved by creating a dictionary of words used and
a list providing the order in which those words were used.

For example, consider the sentence:

Ask not what your country can do for you, ask what you can do for your country.

This sentence can be represented by the following index:

Index Word
1 ask
2 not
3 what
4 your
5 country
6 can
7 do
8 for
9 you

By referring to the dictionary, the original sentence can be reproduced from the sequence:

1 2 3 4 5 6 7 8 9 1 3 9 6 7 8 4 5
Storing the index and the sequence requires a smaller file than storing the original sentence.
For larger blocks of text with many repeated words, this can reduce the size of a text file quite
considerably.

Lossless compression means that files can be restored to their original condition since no data
has been removed and all the information is still available.

Knowledge check

44 What is file compression?
45 Describe the difference between lossy and lossless compression.
46 Explain why lossless compression must be used when sending a computer program as

an email attachment.
47 Explain the importance of using compression for sending image and video files over the

internet.

9781510484160.indb 40 27/05/20 7:20 PM

41

RE
C

A
P

A
N

D
 R

EV
IE

W

1.2.1 Primary storage
A computer needs primary storage for data it needs to access
quickly. This includes:

■ start-up or boot instructions
■ the operating system
■ programs that are running
■ any data associated with the operating system or programs.
There are two main types of primary storage: RAM and ROM.

RAM
■ Random access memory (RAM) is volatile, which means it

needs power to maintain it. If the power is turned off the RAM
loses its contents.

■ RAM holds the operating system, and any applications and
data currently in use by the computer.

■ The CPU can access RAM quickly – much faster than it can
access secondary storage such as a hard disk drive.

■ The more RAM in a computer the more programs and data
it can run at the same time and the better the computer’s
performance.

■ RAM can be read or written to.
■ RAM is also known as the main memory in the computer.

ROM
■ Read-only memory (ROM) is non-volatile, which means it does

not need power to maintain it. If the power is turned off ROM
keeps its contents.

■ ROM provides storage for data and instructions needed to
start up the computer (also known as the boot process).

■ ROM content is read-only, which means it cannot be overwritten.
■ Information in ROM is often written at the manufacturing stage.

1.2 MEMORY AND STORAGE

Important words

You will need to know and
understand the following for
the exam:
Primary storage
RAM
ROM
Volatile and non-volatile
Read-only
Read and write
Virtual memory
Secondary storage
Magnetic storage
Hard disk drives (HDDs)
Solid-state storage
Solid-state drives (SSDs)
Optical storages
Binary
Bit (b)
Byte (B)
Nibble
Using prefixes: kilobyte (KB),

megabyte (MB), gigabyte
(GB), petabyte (PB)

Denary
Overflow error
Binary shift
Most significant bit (MSB)
Least significant bit (LSB)
Hexadecimal
Binary code
Character set
ASCII
Unicode
Pixel
Metadata
Colour depth
Resolution
Analogue
Sample rate
Bit depth
Lossy compression
Lossless compression

RECAP AND REVIEW

9781510484160.indb 41 27/05/20 7:20 PM

42

1.
2

M
em

or
y

an
d

st
or

ag
e

A comparison of RAM and ROM
RAM ROM
Is volatile and needs power to maintain the
content

Is non-volatile and does not require power to
maintain the content

Is read and write – data can be read from and
written to RAM by the computer

Is read-only – the computer cannot overwrite
its content

Holds the operating system and any programs
and data currently in use by the computer

Holds the data and instructions required to
start up (boot) the computer

Virtual memory
Running several programs at once, or running programs that use large amounts of data, can
require more RAM than is available. However, the computer can assign a section of secondary
storage to temporarily act like RAM. This section of secondary storage is called virtual memory.

■ Any data from a running program that is not currently being used by the computer can be
temporarily moved from RAM to virtual memory.

■ When that data is required by the computer, it is moved back from virtual memory into RAM.
■ Moving data between RAM and virtual memory is relatively slow – so using virtual memory

slows down the performance of the computer.

■ Adding more RAM reduces the need for virtual memory. If less data is held in virtual memory
then there are fewer slow data transfers between RAM and virtual memory.

■ Therefore, adding more RAM improves the performance of the computer.

1.2.2 Secondary storage
Secondary storage is needed to store files and programs. It needs to be:
■ non-volatile, that is, it doesn’t lose data when switched off
■ low cost
■ high capacity
■ reliable.

Magnetic storage
Magnetic storage mostly uses hard disk drives (HDDs).
■ They are made of a stack of magnetic disks (or platters) that rotate.
■ A moving read/write head moves across the surface of the platters to read and write data.
■ Magnetic disks are reliable and cost effective and provide high-capacity storage at low cost.

9781510484160.indb 42 27/05/20 7:20 PM

43

RE
C

A
P

A
N

D
 R

EV
IE

W

Solid-state storage
Solid-state storage uses a technology called flash memory. It is used in portable hand-held
devices and increasingly in computers in the form of solid-state drives (SSDs).
SSDs have the following characteristics:

■ Because they use flash memory, SSDs have no moving parts.
■ No moving parts means access to data is faster than for a magnetic hard disk drive.
■ No moving parts also means power requirements are low and no noise or heat is generated.
■ SSDs are robust, lightweight and compact making them ideal for use in portable devices.
■ SSDs have a smaller capacity than magnetic hard disk drives and the cost per unit of storage

is higher.
■ SSDs are commonly used in tablet computers, mobile phones, cameras and general-purpose

computers.

Optical storage
■ Optical storage devices use the properties of light to store data.
■ The most common optical storage medium are optical disks – CDs, DVDs and Blu-Ray disks.
■ They work by reflecting laser light onto the surface of the rotating disk and reading the

reflections as 1s or 0s.

■ CD-ROM and DVD-ROM are read-only media.
■ CD-R and DVD-R are write-once/read many times media.
■ CD-RW and DVD-RW are rewriteable media.
■ Blu-Ray disks use a blue laser light that can detect data stored at a higher density than CDs

and DVDs.

■ Blu-Ray disks have a much higher capacity than CDs and DVDs, making them ideal for storing
and distributing high-definition video films or large amounts of data.

■ Blu-Ray disks can be formatted with up to four layers for very high capacity.
Optical media are low cost and robust making them an ideal way to distribute data.

Advantages and disadvantages of each media
When selecting the right device or medium for a purpose the following must be considered:
■ Capacity: How much data does it need to store?
■ Speed: How quickly does the data need to be accessed?
■ Portability: Does the device or medium need to be transported?
 If so, the size and weight are important.
■ Durability: Will the device or medium be used in a hostile environment?
 If so, the medium must be resistant to external shocks or extreme conditions.

9781510484160.indb 43 27/05/20 7:20 PM

44

1.
2

M
em

or
y

an
d

st
or

ag
e

■ Reliability: Does it need to be used repeatedly without failing?
■ Cost: What is the cost per unit of storage related to the value of the data?

Media Capacity Typical cost Cost per GB
Magnetic
hard disk

Up to 15 TB A 2 TB HDD costs around £60
and a 10 TB drive about £300

3p

SSD 250 MB up to 2 TB £30 up to £300 for a 2 TB drive 15p
DVD 8.5 GB 80p 9p
Blu-Ray 50 GB £3.00 6p
CD 700 MB 18p 23p

Storage type Data transfer rates (typical)
SSD 200–550 MB/s
Magnetic hard disk 50–120 MB/s
Blu-Ray disk 72 MB/s
DVD 1.32 MB/s
CD 0.146 MB/s

Media Portability Durability Reliability
SSD Small, with low power

requirements

Very portable

With no moving parts they
are not subject to damage
from sudden shocks.

The medium is reliable and will
hold data safely for a very long
time before failure.

Magnetic
hard disk

With moving parts, higher
power requirements
than SSD. Available as
external drives powered
from a USB

Subject to damage from
being dropped or from
exposure to magnetic
fields.

Ideal for medium term storage
with a reliable life of 5–7 years.
Motors and heads are subject
to failure over time or from
excessive use or mishandling.

CD

DVD

Blu-Ray

Light and small

Very portable – can
even be sent through
the post

Reasonably robust and
resistant to shocks

Easily damaged by
mishandling and scratches.

CDs and DVDs will start to fail
after 10 years; Blu-Ray will fail
after 20 years.

1.2.3 Units
Why data needs to be converted into binary
Computers use switches to store data and these switches can be in one of two states: on or off.
Because of this we need to convert all data and instructions into binary, which can represent on
or off using the two digits 0 and 1.

9781510484160.indb 44 27/05/20 7:20 PM

45

RE
C

A
P

A
N

D
 R

EV
IE

W

Units of data storage
■ Each stored binary digit is called a bit (binary digit).
■ A group of 8 bits is called a byte.
■ Half a byte, 4 bits, is called a nibble.

4 bits (b) 1 nibble
8 bits (b) 1 byte (B)
1000 B 1 kilobyte (KB)
1000 KB 1 megabyte (MB)
1000 MB 1 gigabyte (GB)
1000 GB 1 terabyte (TB)
1000 TB 1 petabyte (PB)

It is important to use the correct symbol, lowercase b for bit and uppercase B for byte.

Data capacity and calculation of requirements
It is important to be able to calculate the required data capacity when choosing storage media.
To do this, we add up the estimated file size for each of the files we need to store and add up to
10% to cover overheads.
For example:

10 pages of word-processed documents @ 100 KB 1 MB
3 postcard sized images @ 6 MB 18 MB
5 minutes of MPEG video @ 50 MB 250 MB
Total 269 MB
10% for overheads 27 MB
Total capacity required 296 MB

sound file size = sample rate (Hz) × duration (s) × bit depth × number of channels
image file size = colour depth × image height (pixels) × image width (pixels)
text file size = bits per character x number of characters

1.2.4 Data storage
Numbers

Converting binary to denary
■ Our everyday counting system is called denary (or decimal). Denary is a base-10 number

system.
■ Binary is a base-2 number system.

9781510484160.indb 45 27/05/20 7:20 PM

46

1.
2

M
em

or
y

an
d

st
or

ag
e

To convert a binary number into denary use the column values and add together the column values
for every column with a 1 in the binary number.

128 64 32 16 8 4 2 1

1 0 1 0 0 0 1 0

This is 128 + 32 + 2 = 162 in denary
The leftmost digit in the number is called the most significant bit (MSB) and the rightmost digit
the least significant bit (LSB). In an 8-bit number, the MSB value represents 128 in decimal and
the LSB value represents 1.

Converting denary to binary
■ Create a table with eight columns representing an 8-bit binary number.
■ Starting with the left-hand 128 column, find the first value that can divide into the denary

number and write a 1 in that column.
■ Subtract that column number from the denary number to get a remainder.
■ Repeat the process using the remainder.
■ Eventually there will be a remainder of either 1 or 0 to be entered into the right-hand 0 column.

Adding binary numbers
When adding two binary digits together there are four possibilities
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 in binary, or 2 in denary.
In the case of 1 + 1 we write down 0 and carry 1 to the next column.
If we carry a 1 to the next column then there is one more possibility:
1 + 1 + 1 = 11 in binary or 3 in denary.
In this case we write down 1 and carry 1.
For example, to add the two numbers 1101 and 1111:

1 1 0 1
+ 1 1 1 1

1 1 1 0 0
1 1 1 1

Overflow errors occur when the number becomes too large to store in the number of bits available,
for example:

1 1 1 0 0 1 1 1
+ 1 1 1 0 1 0 0 1

1 1 0 1 0 0 0 0
1 1 1 1 1 1

The carried 1 is the final
digit in the sum giving
the answer 11100.

9781510484160.indb 46 27/05/20 7:20 PM

47

RE
C

A
P

A
N

D
 R

EV
IE

W

When adding two 8-bit numbers, there is no column available to store the carry digit from the
8th column and it is lost.

■ The result of the calculation will not fit into 8 bits.
■ This is called overflow and means the result will be incorrect.
■ In denary, this example has calculated that 231 + 233 = 208 – which is clearly incorrect and is

due to the overflow error.

Overflow can generate further logical errors in a program because the result is not as expected.
The program may crash if it cannot deal with the overflow digit.

Binary shifts
Moving the binary digits to the left or right is called a binary shift.
Moving to the left multiplies the value by 2 for each place the value is shifted.
Moving to the right divides the number by 2 for each place the value is shifted.

128 64 32 16 8 4 2 1
1 1 0 1 0

This number is 26 in denary.
If we shift the binary number one place to the left, we get:

128 64 32 16 8 4 2 1
1 1 0 1 0 0

Which is 52 (= 26 x 2) in denary.
If we shift the original binary number one place to the right, we get:

128 64 32 16 8 4 2 1
1 1 0 1

This number is 13 (= 26 / 2) in denary.
If we shift the original binary number two places to the right. we get:

128 64 32 16 8 4 2 1
1 1 0

This number is 6 in denary. However, 13 / 2 = 6.5 so our answer is not quite right. This is because
with this shift to the right, we lost a 1. We have lost some information, which has led to a lack of
precision.
Shifting the number left when the MSB is 1 means that we lose a 1, which results in an overflow
error.
Shifting the number right when the LSB is 1 means that we lose a 1, which results in a loss of
precision.

9781510484160.indb 47 27/05/20 7:20 PM

48

1.
2

M
em

or
y

an
d

st
or

ag
e

Hexadecimal
■ Hexadecimal (or hex) is a base-16 number system.
■ We need 16 symbols to represent all the digits in hexadecimal.
■ We use 0 to 9, plus the letters A to F to represent the values from 10 to 15.
■ You are only expected to work with two-digit hexadecimal numbers in the exam.

Denary Hex Binary Denary Hex Binary
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Converting denary to hex
■ Divide 16 into the denary number and write down the correct hexadecimal symbol for the

result in the 16s column.
■ Convert the remainder to the correct symbol and write that down in the 1s column.
For example, 202 in denary is:
202 / 16 = 12 remainder 10.
‘12’ in denary is ‘C’ in hex, and ‘10’ in denary is ‘A’ in hex. The hexadecimal number is therefore:

16 1
C A

Converting hexadecimal to denary
■ Convert each hex digit to its denary equivalent.
■ Multiply the column headings by the equivalent denary value.
■ Add the two values together.
For example, to convert CA back to denary:
C is 12 in denary and A is 10 in denary.

16 × 12 = 192
1 × 10 = 10
192 + 10 = 202

Converting binary to hex
■ Split the binary number into nibbles.
■ Convert each nibble to the corresponding hex symbol.

9781510484160.indb 48 27/05/20 7:20 PM

49

RE
C

A
P

A
N

D
 R

EV
IE

W

For example, 11110 in hex is:
■ first nibble is 0001 (remember 11110 is 00011110 as an 8-bit number)
■ second nibble is 1110

■ 0001 in decimal is 1 which in hex is 1
■ 1110 in decimal is 14, which in hex is E.
Hence 11110 is 1E in hex.
In the exam, you will only need to convert between number systems in the following ranges:
■ 0 to 255 in denary
■ 00000000 to 11111111 in binary
■ 00 to FF in hexadecimal.

Characters
■ Each character is represented by a numeric binary code.
■ The character set of a computer is a list of all the characters available to the computer.
■ It is important computer systems all agree on these codes and there are some agreed standards.

ASCII
■ ASCII is a 7-bit code able to represent the English alphabet, numbers, some symbols and

some control characters.

■ There are 27 or 128 characters available

Extended ASCII
■ Extended ASCII uses the 8th bit in the byte to provide codes for an additional 128 characters

to include extra symbols, mathematical symbols and some non-English characters.

■ There are 28 or 256 characters available.

Unicode
■ Unicode originally used a 16-bit code to represent many additional non-English characters

and a wide range of symbols.
■ The 16-bit code has 216 or 65 536 characters available.
■ Unicode has since been extended to use even more bits to represent billions of characters.
■ The original ASCII and extended ASCII codes are the same in Unicode so ASCII can be considered

a subset of Unicode.
Text file size = number of characters × number of bits per character

9781510484160.indb 49 27/05/20 7:20 PM

50

1.
2

M
em

or
y

an
d

st
or

ag
e

Images
■ Images are represented on screen as a series of pixels.
■ A pixel is the smallest element of an image – these are the dots that make up the image on

screen or in a printout.
■ Pixels are stored in a computer as binary codes.
■ The number of bits used for each pixel determines how many colours each pixel can represent.
With 1 bit for each pixel we have just two possibilities: 0 or 1. This means a pixel can only be one of
two colours.
To store more than two colours we need more bits per pixel:
■ 2 bits to store 4 (22) colours per pixel
■ 3 bits to store 8 (23) colours per pixel
■ 8 bits to store 256 (28) colours per pixel.
Metadata means ‘data about data’.
Image metadata contains information that tells the computer how to reproduce the image from
the binary data stored and includes:

■ Colour depth – the number of bits used per pixel.
■ Resolution – the number of dots (pixels) per unit of distance, for example dots per inch (DPI).
Higher colour depth:
■ a larger number of colours can be represented giving a better quality image
■ more data is stored making the image file larger.
Higher resolution:
■ more pixels are used to represent the image meaning the quality is better and it can be made

larger without losing resolution
■ more data is needed to represent the pixel, meaning the file needed to store the data is larger.

Image file size = colour depth × image height (px) × image width (px)

Sound
Sounds are a series of vibrations that continuously vary and can take any value – this means they
are analogue.
In order to store this on a computer sound is sampled at regular intervals by a device that
converts analogue to digital signals, and the digital values are stored as binary.

■ The sample rate is the number of samples taken per second, measured in Hz (hertz). 1 Hz
means one sample per second.

■ The duration is the length of time that the sound is sampled for, measured in seconds or minutes.
■ The bit depth is the number of bits used to store each sample.

9781510484160.indb 50 27/05/20 7:20 PM

51

RE
C

A
P

A
N

D
 R

EV
IE

W

Sound file size depends on three things:
■ The more frequently the sample is taken the better the approximation to the original sound –

but the larger the file needed to store the data.
■ The longer the duration the larger the file needed to store the data.
■ The greater the bit depth the more data is stored about each sample and the better the

quality of the sound – but the greater the file needed to store the data.
Sound file size = sample rate (Hz) × bit depth × duration (seconds) × number of channels

1.2.5 Compression
When transmitting files, storing very large files or storing a large number of files we need to
compress the data to make it smaller.

Lossy compression
■ Some of the data is removed to make the file smaller.
■ Algorithms remove data that is least likely to be noticed.
■ The original file cannot be restored from the compressed version.

Lossless compression
■ None of the data is removed.
■ Algorithms look for patterns in the data so that repeated data items only need to be stored

once, together with information about how to restore them.
■ The original file can be restored.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 51 27/05/20 7:20 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

52

A computer network is two or more computers or devices that are linked together, either
using cables or wirelessly. This means that they can communicate with one another and can
share resources.

As well as computers and printers, devices that may be connected to a network include
smartphones, tablets, gaming consoles, fitness trackers, smart watches and internet-connected
home appliances.

Advantages of computer networks
One of the main advantages of computer networks is the ability for computers to share
hardware resources such as printers and internet connections.

Another advantage of computer networks is the ability to exchange data between computers
without needing to use physical media such as memory sticks or external hard drives. This can
be particularly useful in a school or office setting and can be achieved using shared drives and
folders.

Network users can also communicate easily using email or video calls.

Using networks in larger organisations like schools and businesses allows computers to be
managed centrally by a network manager. This enables them to update software remotely and
manage security centrally through the use of firewalls and anti-malware software. They can
also control access to files and resources for different users, and user activity can be monitored.

Disadvantages of computer networks
Additional hardware is needed to set up a network, which can be expensive, and larger
networks will need to be overseen by a network manager.

If one machine on a network gets infected with malware it can quickly spread to other
machines on the network if up-to-date anti-malware software and other security measures
are not in place.

It is also possible that hackers may target a network specifically in order to gain access to
several computers.

1.3.1 Networks and topologies

Types of network
There are two main types of network that you need to know about.

Local area network (LAN)

A local area network or LAN is the type of network found in homes, schools and single-
site companies and organisations. LANs cover a small geographic area as the computers and

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

1.3.1 Networks and
topologies

➤	 Types of network

➤	 Factors that affect
the performance of
networks

➤	 Client–server and
peer-to-peer networks

➤	 Hardware needed to
connect computers
into a LAN

➤	 The internet as a
worldwide collection
of computer networks

➤	 Star and mesh
network topologies

1.3.2 Wired and wireless
networks

➤	 Modes of connection

➤	 Encryption

➤	 IP and MAC
addressing

➤	 Standards

➤	 Common protocols

➤	 Layers

COMPUTER NETWORKS,
CONNECTIONS AND
PROTOCOLS

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

1.3

9781510484160.indb 52 27/05/20 7:20 PM

53

1.
3.

1
N

et
w

or
ks

 a
nd

 to
po

lo
gi

es

buildings are usually located on one site. The hardware is usually owned and maintained by the
organisation that uses it, and it will often use both wired and wireless connections.

Workstation Workstation

Server

Printer
Switch Router Internet

Figure 1.3.1 Basic LAN network

Wide area network (WAN)

A wide area network or WAN is a type of network used by large organisations such as
banks, with offices in different locations that need to be linked together. A WAN typically
covers a wide geographic area, which may even be worldwide, and links together the LANs
for each different site. The connections between the sites are usually hired or leased from a
telecommunication company and may include cable, satellite and telephone lines.

LAN

LAN

LAN

LAN

Network
servers

LAN
switch

Network
usersWAN

Gateway
router

Figure 1.3.2 Basic WAN network

The internet is essentially a huge, worldwide WAN.

Knowledge check

1 Describe the characteristics of a LAN.
2 Identify two differences between a LAN and a WAN.

9781510484160.indb 53 27/05/20 7:21 PM

54

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Factors that affect the performance of
networks
Network performance refers to how quickly data is transmitted through a network, and
therefore what the experience is like for the user. There are several main factors which can
affect this.

Bandwidth

Bandwidth refers to how much data can be transmitted over a network in a given period
of time. It is usually measured in bits (or megabits) per second. The greater the bandwidth
capacity, the more data that can be transmitted in that time period. Bandwidth capacity
depends on the equipment that makes up the network.

Bandwidth can be compared to water flowing through a pipe. The maximum amount of
water that can flow through a pipe in one minute represents the maximum bandwidth. A
small pipe will only allow a small amount of water through, whereas a large pipe will allow a
lot more water through in the same amount of time. A larger pipe represents a network with
a larger bandwidth.

Number of users

The available bandwidth is shared between all of the users on a network. A large number of
users can cause network congestion, meaning that data packets are queued before they can
be transmitted. In addition, some activities, such as streaming HD video, will require a greater
amount of bandwidth, which reduces the amount left for other users to share.

Transmission media

Data can be sent around a network through cables or wirelessly. Within a LAN it is usual for
copper network cables or Wi-Fi to be used. Copper network cables have a bandwidth of up
to 1000 Mbps whereas Wi-Fi only has a bandwidth of up to 300 Mbps. Therefore, network
cables allow for faster and more reliable transmission. However, despite being slower, wireless
connection is very common as it avoids the need to install cables and it is very easy to add and
remove new devices.

Traditionally, WANs were connected using copper telephone cables, but as these were
designed for carrying voice signals, they do not support fast data transfer. Fibre-optic cable is
increasingly used instead and this allows for a much greater bandwidth.

Transmission media will be discussed in more detail later in this chapter.

Error rate

When there is a lot of traffic on a network, it can result in transmission errors due to data
packets colliding. This is a bit like two people talking to each other simultaneously and neither
being able to hear the other person properly. There may also be transmission errors due to
interference from other wireless networks nearby or due to a weak Wi-Fi signal. Errors mean
that the packets have to be re-sent, which in turn increases data traffic.

Knowledge check

3 Describe what is meant by bandwidth.
4 Identify and explain three elements that can affect the performance of a network.

Tech terms

Data packets Small
chunks of data that are
transmitted across the
internet.

Mb (megabit) A
megabit is equal to one
million bits. Megabits
(Mb) should not be
confused with megabytes
(MB). Remember – there
are 8 bits in a byte.

Mbps Megabits per
second

Beyond the spec

In a network, latency is
a measure of how much
time it takes for a packet
of data to travel from
one device to another.
Latency is affected by
factors such as the
transmission media used.

9781510484160.indb 54 27/05/20 7:21 PM

55

1.
3.

1
N

et
w

or
ks

 a
nd

 to
po

lo
gi

es

Client–server and peer-to-peer networks

There are two main ways in which the computers in a network are organised.

Client–server networks

In a client–server network there are two types of computers: servers and clients.

Servers are high-end computers that provide services for the rest of the network. There may
be more than one server in a network, and servers may be specialised to perform specific
functions:

● File servers store users’ documents and files. This means that they can be accessed from
any computer on the network.

● Authentication servers check whether a username and password match those stored in
a database, and then control the resources that a user can access.

● Application servers run programs across the network.

● Web servers store and share web pages.

● Print servers manage printing across the network.

● Mail servers store and handle email.

The computers that connect to servers are known as clients. These request the services and
resources that they require from the servers, such as software and files. The server processes
this request and then sends a response back to the client. Clients do not normally store data.

Client

Client

Client

Client

Server

Figure 1.3.3 Client–server network

Client–server networks are the most common way to organise a LAN, and are well-suited to
schools or organisations with large numbers of computers, or where users need to access the
same software or files.

Advantages of client–server networks
The main advantage of client–server networks is that activities can be managed and controlled
centrally. Users’ files can be stored on the server so they can be accessed from any connected
client device. Backups can also be managed centrally ensuring that all files are included.
Software and security updates can be managed by network managers without the need to
update every client computer individually, and activity on client machines can be monitored.
User accounts can be managed centrally, including the changing of passwords and recovery of
lost files, and access levels can be controlled for different categories of user.

9781510484160.indb 55 27/05/20 7:21 PM

56

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Disadvantages of client–server networks
There are, however, some disadvantages of client–server networks. If the server becomes
unavailable for any reason, users will not be able to access their files, and servers can become
overwhelmed by too many requests, preventing clients from accessing their services. Server
hardware is typically more expensive than ordinary computers, which increases the upfront
cost of setting up a client–server network. A cyber attack, such as a ransomware attack, only
needs to focus on the server rather than on each individual client.

Peer-to-peer networks

In a peer-to-peer (P2P) network all of the computers have equal status and are connected
directly, using cables or wirelessly, without a central server. Each computer is called a peer and
stores its own files. Peers are configured so that specified files and folders can be accessed by
other peers on the network.

Figure 1.3.4 Peer-to-peer network

P2P networks are easy to set up and can be suitable for small organisations with few computers
or less need to share data, and are the model most often found in home networks. Examples
of P2P network activities include:

● wireless printing from a laptop, tablet or phone

● ad hoc file sharing, such as the use of AirDrop on iOS devices

● streaming audio from a device to a Bluetooth speaker

● sharing internet connections via personal hotspots.

Advantages of peer-to-peer networks
The main advantage of peer-to-peer networks is that they are easy to set up as they do not
require any expensive or dedicated hardware. P2P networks are also more robust as there is no
single point of failure, meaning that if one device fails the rest of the network will still continue
to operate normally.

Disadvantages of peer-to-peer networks
Without a central server there is no central management or maintenance of a P2P network.
This means that software and security updates have to be carried out individually on each
peer device. In addition, there is no centralised backup of files as the files are distributed among
the peer devices, so each peer needs to be backed up separately. Files are duplicated when
they are transferred between devices, which often leads to multiple versions of the same
document, which can lead to out-of-date versions being used. It is also possible for peers to go
offline when they are being accessed. This might happen if a device loses its Wi-Fi connection,
or simply because it is switched off.

9781510484160.indb 56 27/05/20 7:21 PM

57

1.
3.

1
N

et
w

or
ks

 a
nd

 to
po

lo
gi

es

Knowledge check

5 Describe the characteristics of a client–server network.
6 Explain two advantages and two disadvantages of using a client–server network.
7 Describe the characteristics of a peer-to-peer network.
8 Explain two advantages and two disadvantages of using a peer-to-peer network.

Network hardware
There are various pieces of hardware that are needed to connect together the devices in a
network.

Network interface controller/card (NIC)

All devices need some form of network interface controller/card (NIC) to connect
to a network. These are usually integrated into the motherboard of modern devices, but they
used to be separate hardware components (which were called network interface cards).

The NIC formats the data to be sent on a network using the correct protocol, and receives
incoming signals. The most common types of NIC are an ethernet port to connect to a wired
network, or a radio transmitter/receiver to connect to a wireless network.

Every NIC has a Media Access Control (MAC) address, which is a unique identifier
used when transmitting data around a network.

Transmission media

On a network, data is transferred between devices either through cables (wired) or by radio
waves (wireless).

Copper wire
Standard network cables consist of eight individual copper wires that are arranged in pairs.
Each pair of cables is twisted together to reduce interference from other signals and therefore
improve transmission.

Data is transmitted as electrical signals and there are different ratings that indicate how quickly
the cable can reliably transmit data and over what range. The bandwidth is generally between
100 Mb and 1 Gb per second, for a distance of up to about 100 metres.

Most PCs have built-in wired LAN port and so connecting computers using copper wire can
be a cost-effective option if the bandwidth is adequate.

Fibre-optic cable
Fibre-optic cables are made up of many thin glass strands (or fibres), which transmit data as
pulses of light. As they use light to transmit data, they do not suffer from electromagnetic
interference. Fibre-optic cables do not break easily as they are strong, flexible and do not
corrode.

Fibre-optic cables have a very high bandwidth of up to 100 Tb per second and are capable of
transmitting data over distances of 100 kilometres or more. For this reason, they are often used
to connect WANs across large geographic areas. The cables that cross the oceans to connect
different continents to the internet are fibre-optic cables.

9781510484160.indb 57 27/05/20 7:21 PM

58

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Radio waves
Wireless networking technologies, such as Wi-Fi and Bluetooth, use radio waves to connect
devices. Radio waves form part of the electromagnetic spectrum and their use is strictly
controlled by governments. The most commonly used frequencies for data transmission are
2.4 GHz and 5 GHz.

The strength of a radio wave decreases as it moves further away from its transmission source,
and so radio waves at 2.4 GHz and 5 GHz are only suitable for relatively short distances of up to
100 metres. Radio waves are also subject to interference from other radio signals of the same
or similar frequencies, and are partially blocked by physical objects such as walls. They generally
have a bandwidth of about 300 Mb per second.

Wireless access point

A wireless access point (WAP) is a piece of hardware that connects to a network switch
and allows Wi-Fi devices to connect to a network.

WAPs broadcast a Service Set Identifier (SSID), which is effectively the name for the
network so that Wi-Fi devices can connect to it. The WAP then sends the wireless data that it
receives on to the main wired network.

The WAP is usually connected to a network switch via a cable. However, WAPs can also be used
to extend the range of a wireless network by transmitting or receiving data from other WAPs.

Switch

A network switch is the piece of hardware that allows multiple devices to connect together
to form a wired network.

A switch stores the MAC address of every device connected to it in a table. When the switch
receives a packet of data it looks at the destination address and forwards it on to the intended
device.

It is possible to connect multiple switches together to increase the number of devices on a
network.

Router

A router is the piece of hardware that connects networks of different types together. Most
commonly, routers are used to connect a LAN to the internet.

Routers inspect the destination IP address (explained in the next section) of a data packet to
determine whether it is located on the local network. If it is not, the data packet is passed on
to the connected network. Routers collect data about all of the available routes to transmit
data and then determine the most appropriate route for each individual data packet.

Home broadband ‘routers’ often combine the features of a switch, WAP and router in one
device, and are referred to as hybrid devices.

Devices with NICs

Switch
Router

WAP

Devices with NICs

Internet

Figure 1.3.5 Basic network diagram

Tech term

Electromagnetic
spectrum The range
of frequencies of
electromagnetic
radiation.

Beyond the spec

Hubs are similar to
switches but do not
hold any information
about the devices
connected to them.
Therefore, all data
packets are transmitted
to all devices, which
affects network
performance because
many unnecessary
transmissions are made.

9781510484160.indb 58 27/05/20 7:21 PM

59

1.
3.

1
N

et
w

or
ks

 a
nd

 to
po

lo
gi

es

Knowledge check

 9 State the purpose of a network interface controller.
10 Identify two ways in which a desktop computer may be connected to a home network.
11 Explain how an individual device is uniquely identified on a LAN.
12 State the name of the hardware device that allows other devices to connect to a LAN

wirelessly.
13 Describe the purpose of a router in a home network.

The internet
The internet is a worldwide collection of computer networks that are all linked together as
a WAN.

The set of rules that ensures that devices can work together on the internet is called the
Internet Protocol (IP). Every computer using the internet has a unique IP address, such
as 212.58.244.26, and this IP address is used to send data from one device to another across the
internet, in the same way that a MAC address is used on a LAN.

Websites are hosted on web servers and are accessed via their IP address. However, addresses
like 212.58.244.26 are hard for humans to remember. Therefore, we use a Uniform Resource
Locator (URL), such as www.mywebsite.co.uk since these are much easier to remember.
The URL includes the domain name, in this example mywebsite.co.uk.

Domain Name Server (DNS)

The Domain Name Server (DNS), or domain name system, keeps a record of the
IP address for each web server that is associated with a particular domain name. It is like a
worldwide phone book that relates domain names to IP addresses.

When a user types the URL for a website into a browser, a request is sent to a DNS server to
ask for the matching IP address. If the DNS server doesn’t have a record for that domain name,
it makes a request to another DNS server that it is connected to. The process continues until
a DNS server is reached that can return the appropriate IP address. The DNS then sends the
required IP address back to the user’s browser. If the IP address cannot be found then an error
message is returned.

Figure 1.3.6 Error message returned if IP address cannot be found

Once the user’s browser knows the required IP address, it can make a request to the appropriate
web server using its IP address.

9781510484160.indb 59 27/05/20 7:21 PM

http://www.mywebsite.co.uk
http://mywebsite.co.uk

60

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Hosting

An internet host is a company that runs servers to provide different types of content via
the internet. This may include file hosting, web hosting, email hosting, video hosting and
game servers. Content can be accessed from any device connected to the internet.

Often, hosting companies will charge a monthly fee in order to use the facilities provided
by their servers, although it is sometimes to access a limited amount of content for free. For
example, a number of hosts provide a limited amount of space to store files in the cloud for
free, but additional space has to be purchased.

The cloud

The cloud is a generic term that refers to storage, services and applications that are accessed
via the internet rather than being stored locally on your computer, tablet or phone.

The cloud is effectively a network of servers, some that store data and others that run
applications. These servers are housed in giant data centres around the world and users do
not actually need to know the geographical location where their data is stored.

Examples of cloud services and applications include:

● file storage and sharing , for example Google Drive, Dropbox, iCloud Drive, OneDrive

● software and applications, for example Google Docs, Office 365, Gmail

● processing power, for example Amazon Web Services (AWS).

Advantages of cloud computing
One of the main advantages of cloud computing is that files and applications can be accessed
from anywhere in the world with an internet connection. Cloud applications are always the
latest, most up-to-date version and users do not have to update anything themselves. This
reduces the need for network managers and technical support staff. The amount of storage
space is flexible, and users can buy additional storage when they run out of space. All data that
is stored in the cloud is regularly backed up and kept secure by the hosting company, and data
can be shared easily with colleagues anywhere in the world.

Disadvantages of cloud computing
However, there are some drawbacks, most notably that an internet connection is required to
access files and services. Users have little control over the security of their data and it is possible
that data stored in the cloud could be targeted more easily by hackers than data stored locally.
It can also be unclear who legally owns the data that is stored. Cloud providers can change their
terms and prices with little notice, and ongoing fees may become expensive in the long run.

Web servers and clients

Every website is hosted on a web server. This is a dedicated computer on the internet
that responds to HTTP and HTTPS requests by returning web pages. It is possible for anyone
to set up their own web server, but people usually use a web hosting company.

The hosting company will generally charge a monthly fee to host the website in its data
centres. Larger or more popular sites that consume more bandwidth will be charged more
each month than a smaller site that requires less bandwidth.

Web hosting often includes domain name registration, which ensures that the chosen name for
the website has not already been taken, and then it is registered on the domain name server (DNS).

In addition to storing the files, web hosting companies will usually offer service guarantees,
ensuring that a website will always be available to visitors. They will also make regular backups
of the data, and apply appropriate security measures to keep a website safe from cyber attacks.

Tech term

Web server A dedicated
computer on the internet
that stores web pages.

9781510484160.indb 60 27/05/20 7:21 PM

61

1.
3.

1
N

et
w

or
ks

 a
nd

 to
po

lo
gi

es

Client computers request files from a server. When you visit a website, the browser on
your device requests the web pages from a web server and they are downloaded to your
device.

Knowledge check

14 Explain why a computer needs an IP address to access the internet.
15 Describe how a domain name is used to access a website.
16 State what is meant by cloud computing.
17 Identify two services that can be accessed via the internet.
18 Explain two disadvantages of storing your data in the cloud.

Network topologies
The way in which devices in a network are arranged and connected together is called its
topology. Any device connected to a network is referred to as a node.

Star network topology

In a star network each computer or client is connected individually to a central point,
usually a switch or hub.

Figure 1.3.7 Star network topology

A star topology is the most common network layout, and it tends to be fast and reliable
because each client has its own connection to the central node. As data is only directed to the
intended computer, it helps to keep network traffic to a minimum, and in turn this reduces
data collisions.

The switch can screen data packets, rejecting any that are corrupt, which can increase security on
the network, and it is easy to add new devices as they simply need to be connected to the switch.
If the connection to one device on the network fails, the rest of the network will be unaffected.

However, star networks require a lot of cabling, as every computer is connected individually,
which can be expensive. If the central server or switch fails then so will the entire network.

Star networks tend to be found in large organisations such as schools and businesses. They
are also found in home networks, especially those that are wireless, with all of the devices
connecting to a central router with a built-in wireless access point.

It is important to note that star network diagrams can appear to look the same as client–
server networks. However, the devices in a star network could run applications in either a
client–server or peer-to-peer model.

Tech term

Network topology
The arrangement of
connections in a network.

9781510484160.indb 61 27/05/20 7:21 PM

62

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Mesh network topology

In a mesh network, all of the devices are connected either directly or indirectly without the
use of a central switch.

Figure 1.3.8 Mesh network topology

In a full mesh network, every device is connected directly to every other device. In a partial
mesh network, direct connections only exist between some of the devices, although all devices
are able to communicate with one another indirectly. This means that computers send their
own data, and also relay (or pass on) data from other devices.

Mesh networks are very robust as there is no single point of failure, and so are used where
the reliability of network communication is very important. For example, the military and the
emergency services, such as the police and fire service, often use mesh topologies to avoid
any breakdown in communications. If any component fails, data can simply be sent down a
different route. Data can also be transmitted from different devices simultaneously allowing
high volumes of data traffic to be handled.

Full wired mesh networks are generally too impractical and too expensive to set up, and require
a lot of maintenance owing to the many connections. On the other hand, wireless mesh
networks are being used increasingly as they are relatively cheap and simple to set up, with
each wireless device being used to route data through the network and thus extend its range.

Mesh network diagrams can look similar to peer-to-peer networks. However, a mesh topology
network can also support a client–server model where one of the devices is the server.

Knowledge check

19 State what is meant by a network topology.
20 Describe a star topology.
21 Explain one advantage and one disadvantage of using a mesh topology.

9781510484160.indb 62 27/05/20 7:21 PM

63

1.
3.

2
W

ire
d

an
d

w
ire

le
ss

 n
et

w
or

ks
, p

ro
to

co
ls

 a
nd

 la
ye

rs

1.3.2 Wired and wireless networks,
protocols and layers

All networks work in essentially the same way. A device prepares a data signal to send to
another device, and this is transmitted along cables or wirelessly until it reaches its destination
address. This transmission is controlled by protocols, which are essentially sets of rules that
all manufacturers and devices use.

Modes of connection
Data can be transferred from one device to another via cables or wirelessly and different
protocols are used for each type of transmission.

Wired

Ethernet is the traditional protocol used to connect devices in a wired LAN. It defines how
data should be physically transmitted between different devices, using MAC addresses to
determine which device the data should be sent to. Ethernet also defines what should happen
if collisions occur on the network.

Wireless

Wi-Fi is a set of protocols that defines how network devices can communicate wirelessly using
radio waves. The Wi-Fi standards determine the frequency band and channel that should be
used, data transmission rates and how devices should be authenticated when they attempt
to join a network.

Most Wi-Fi standards transmit data using radio waves in one of two frequency bands, either
2.4 GHz or 5 GHz. Signals transmitted on the 2.4 GHz frequency have a greater range but lower
data transmission rates than those using the 5 GHz frequency.

Beyond the spec

In order to maximise the amount of data that can be sent, each frequency band is
subdivided into smaller frequency ranges called channels. However, most of these
channels overlap, causing significant interference between wireless networks. There
are only three channels that don’t overlap in the 2.4 GHz band, which reduces its
effectiveness for supporting numerous Wi-Fi networks.

The 5 GHz frequency band has 24 non-overlapping channels, which enables many more
wireless networks to exist side by side without interfering with one another. However, it is
less able to penetrate through walls and other obstacles than the 2.4 GHz frequency.

2.400
GHz

2.410
GHz

2.412 2.437 2.462 2.484

2.420
GHz

2.430
GHz

2.440
GHz

1 2 3 4 5 6 7 8 9 10 11 1412 13

22 MHz

2.450
GHz

2.460
GHz

2.470
GHz

2.480
GHz

2.490
GHz

2.500
GHz

Figure 1.3.9 2.4 GHz channel diagram

9781510484160.indb 63 27/05/20 7:21 PM

64

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Bluetooth is another form of wireless protocol that can be used over short distances using
ultra high frequency (UHF) radio waves. It is very secure, and does not require a clear line of sight
between the two devices. Common uses of Bluetooth are connecting Bluetooth headphones
to devices, streaming audio to Bluetooth speakers and sharing files between mobile devices.

Advantages Disadvantages

Ethernet ● Stable connection.
● More secure.
● Faster data transfer speed.
● Signal quality usually better.

● More expensive to install.
● More difficult to add extra devices.
● Devices can only be used in one location.

Wi-Fi ● Cheap set-up costs.
● Can connect multiple devices without the need for

extra hardware.
● Less impact on the physical environment as no wiring

needed.
● User can work in multiple locations.

● More vulnerable to hacking.
● Signal quality will reduce through walls and other

obstructions.
● Interference can occur.
● The connection is not as stable.
● Tends to have slower data transfer speeds.

Bluetooth ● Free to use if the device has Bluetooth installed.
● Quick to pair devices.
● Data communication is more secure than open Wi-Fi.
● Avoids interference from other wireless devices.

● Only works over short distances.
● Lower bandwidth than Wi-Fi.

Encryption
It is very easy to intercept wireless signals and so most wireless networks are encrypted.
When a device wants to connect to a secure wireless network, a Wi-Fi password needs to be
entered. This wireless network password (or network security key) must be entered correctly
to authenticate the device and allow it to connect to the wireless network. The Wi-Fi network
then uses a unique encryption key to scramble the data that is sent over the network so that
if it is intercepted, it doesn’t make sense and cannot be used by others. Only devices with the
correct encryption key can decode the data.

Knowledge check

22 Explain what is meant by a protocol.
23 Identify the protocol used to send messages across a wired network.
24 State the two common frequencies used for Wi-Fi networks.
25 A smart watch needs to connect to an application on a smartphone. Identify the

protocol most likely to be used to transfer data from the smart watch to the phone and
give two reasons why it is appropriate.

IP addressing and MAC addressing
In order to send data across a network, an address is needed, much the same way that an
address is written on the front of an envelope to send a letter. There are two types of address
used on networks.

IP addresses

Every device in a network has a unique Internet Protocol (IP) address. This represents the
location of the device on the network, just like your postal address indicates where your home
is. Every time a device connects to the internet, it is assigned an IP address to use for that
session by the Internet Service Provider (ISP).

Beyond the spec

The IP address is usually
a dynamic address,
which means that it
may change from time
to time. It is possible to
get a static address that
is permanently assigned
to a device and does not
change, but these are
usually reserved for ISPs
and important servers.

9781510484160.indb 64 27/05/20 7:21 PM

65

1.
3.

2
W

ire
d

an
d

w
ire

le
ss

 n
et

w
or

ks
, p

ro
to

co
ls

 a
nd

 la
ye

rs

IPv4
There are currently two different IP address systems in use. IPv4 uses a 32-bit number.

The address is broken down into four 8-bit sections, each of which represents a number
between 0 and 255. Each section is separated by a full stop, for example: 194.83.249.5.

In theory, IPv4 provides 232 or just over 4 billion different addresses. However, this will soon not
be enough to satisfy global demand.

IPv6
IPv6 is the new standard but is not yet implemented everywhere. IPv6 addresses use 128 bits,
which are divided into eight 16-bit sections.

IPv6 addresses are written using hexadecimal, and as each hexadecimal number represents
4 bits, there are four numbers to each section or group. Each group is separated by a colon, for
example: 2001:0db8:3c4d:0015:0000:1234:1a2f:1a21

This allows for 3.4 x 1028, or 34 000 trillion trillion, different addresses. If we had been assigning
IPv6 addresses at a rate of 1 billion per second since the earth was formed 4.5 billion years ago,
we would have used up less than one trillionth of the addresses by now!

MAC addresses

A Media Access Control (MAC) address is a unique number that identifies the actual device
that is connected to a network. The MAC address is part of the NIC inside the device and is
assigned when the NIC is manufactured and cannot ever be changed.

A MAC address is made up of 48 bits, shown as six groups of two hexadecimal digits, for
example: b8:09:8a:b8:57:17

Knowledge check

26 Explain the purpose of an IP address.
27 An IPv4 address consists of four denary numbers, each between 0 and 255. State how

many bits are needed to store the IP address.
28 Describe the format of an IPv6 address.
29 Explain the purpose of a MAC address.

Standards
Computer standards are official definitions or rules that exist for various aspects of
computing. For example, standards exist for operating systems, programming languages,
communications protocols, hardware devices and data formats. Some standards are set and
agreed by official organisations, and others have become established by common use.

Some common software standards include HTML for creating websites, and the MP3 file
format for encoding audio files. The standards for USB connectors enable them to be used
to connect hardware from different manufacturers to a wide range of different computer
systems – for example, connecting a memory stick to a laptop or desktop running different
operating systems.

Hardware and software standards are very important as they allow different manufacturers to
make components and programs that are compatible and will work with each other. Without
standards, only hardware and software made by the same company could be used together.
A program or product is likely to be more popular if it is widely compatible and can be used
with a range of different systems.

9781510484160.indb 65 27/05/20 7:21 PM

66

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Knowledge check

30 Explain why standards are used in computing.

Common protocols
There are a number of different network protocols, or sets of rules, that define how data
is transmitted between devices to ensure that devices from different manufacturers can
communicate with each other.

Hypertext Transfer Protocol (HTTP)

HTTP defines how web browsers (clients) should request and web servers should deliver
resources such as HTML files.

Hypertext Transfer Protocol Secure (HTTPS)

HTTPS is a secure version of HTTP that adds Secure Socket Layer (SSL) encryption
to the communications. It is used for activities such as internet banking and online shopping.

File Transfer Protocol (FTP)

FTP is used to transfer computer files between a client and a server. It is commonly used for
uploading web pages to web servers.

Post Office Protocol (POP)

POP is used to retrieve emails from an email server. When the user logs in to the email server
all emails are downloaded to the device being used and are then deleted from the server. It is
more or less obsolete these days.

Internet Message Access Protocol (IMAP)

IMAP is an alternative protocol for accessing email messages. However, the messages are read
rather than downloaded, and can be organised into folders or flagged as important. IMAP
allows multiple devices to have synchronised access to the same inbox.

Simple Mail Transfer Protocol (SMTP)

SMTP is used to send email to an email server, or between servers, for example where the
sender and recipient have different email service providers.

Transmission Control Protocol/Internet Protocol (TCP/IP)

TCP is a protocol that splits the data from applications into smaller data packets that can be
sent across a network.

Each packet is made up of a header and payload. The header contains the sequence number
of the packet and a checksum to allow the recipient device to check that it has been sent
correctly. The payload contains data from the application that needs to be sent.

The Internet Protocol (IP) defines how data packets should be sent between networks. An
IP header is added to each packet containing the source and destination IP addresses for that
packet. Routers use this information to determine whether the packet’s destination is on the
local network or whether the packet needs to be passed onto another network.

TCP and IP almost always work together.

Tech terms

Header Contains details
about the sequence
of the data packet in
relation to all the other
data packets, and error
checking codes.

Payload Is the data
that the data packet is
transmitting.

9781510484160.indb 66 27/05/20 7:21 PM

67

1.
3.

2
W

ire
d

an
d

w
ire

le
ss

 n
et

w
or

ks
, p

ro
to

co
ls

 a
nd

 la
ye

rs

Knowledge check

31 Identify the most appropriate protocol to be used when uploading a file from a
computer to a web server.

32 Identify the most appropriate protocol to use when communications between a client
and host need to be encrypted.

33 Explain the purpose of the SMTP protocol.
34 TCP and IP are two protocols used in network communications. State what the initials

TCP and IP stand for and describe the function of each protocol.

The concept of layers
In order to simplify the network communication process, the different activities involved in
sending data packets are divided into layers. Each layer is concerned with a different task,
and the relevant protocols are assigned to each layer. The layers are organised into the order in
which their rules must be applied.

For example, one layer is concerned with allowing web browsers, web servers and email clients
to communicate. This requires the data to be encoded in a way that will be understood by
both the client and the server, and involves protocols such as HTTP, HTTPS, FTP, POP, IMAP
and SMTP.

Another layer is concerned with splitting the data into packets and adding packet information
such as the packet number, size and the total number of packets. This information is needed
so that the data can be reassembled correctly by the recipient device. The protocol involved
at this level is TCP. The TCP layer does not need to know anything about the data that is being
sent, it is just concerned with packaging it up.

Another layer adds the sender and recipient IP addresses, so that the network knows where to
send the data. This is done by the Internet Protocol.

A final layer adds the MAC addresses of the sender and recipient to allow the data packet to
be directed to a specific device. The data is then converted into electrical signals and sent via
Ethernet or Wi-Fi using the relevant protocol.

Layer Function of the layer Relevant protocols

Application Layer Encodes data to allow communications
between clients and servers

HTTP/HTTPS

FTP

POP

IMAP

SMTP
Transport Layer Splits the encoded data into packets to allow

them to be sent over a network
TCP

Internet Layer Adds the IP address of the sender and
recipient to each packet

IP

Network Access Layer Adds the MAC address of the sender and
recipient, and converts the data into electrical
signals

Ethernet

Wi-Fi

So, as data is passed from one layer to another additional information is added by the relevant
protocols. This process of wrapping the data with more information as it passes through the
layers is called encapsulation. When the data reaches its destination, it is then unwrapped
and the information read one layer at a time.

Tech term

Encapsulation
Wrapping data with
more information as
it passes through the
layers.

Beyond the spec

The layer names have
been provided for
reference but this detail
is not covered in the
specification.

9781510484160.indb 67 27/05/20 7:21 PM

68

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

The benefits of using layers

Layering is useful as it breaks down complex problems into smaller, more manageable parts. It
is a concept that is not confined to computer science, but is frequently found in engineering.
For example, many cars are built using interchangeable parts, with the same components
being used on various makes and models of car. Different suppliers or developers can work to
improve individual components without needing to modify other parts of the system.

Each layer uses specific hardware and software to perform particular tasks. This means that
each layer is self-contained, but is able to send and receive data to and from the layers above
and below it.

This is helpful as it means that one layer can be developed or changed without affecting
the other layers. Software and hardware manufacturers only have to be concerned with
understanding how one layer works when developing new products. Therefore, different
companies can develop products that will work together.

It is also helpful when trying to identify and correct networking errors and problems as the
issue can usually be narrowed down to one layer of the process.

Knowledge check

35 TCP/IP is a set of protocols based on layers. Explain what is meant by a ‘layer’.
36 Describe two advantages of having the protocols arranged in layers.

9781510484160.indb 68 27/05/20 7:21 PM

69

RE
C

A
P

A
N

D
 R

EV
IE

W

1.3 COMPUTER NETWORKS,
CONNECTIONS AND PROTOCOLS

RECAP AND REVIEW

1.3.1 Networks and topologies

Types of network
A network is formed when two or more computers and devices are
linked together so that they can communicate and share resources.
A local area network (LAN) consists of devices connected together
in a single building or site, such as a school or office, using ethernet
and wireless connections.

A wide area network (WAN) is formed by connecting together
LANs. They may be spread across a wide geographic area and use
telephone lines, fibre-optic cables and even satellites. The largest
WAN is the internet.

Network performance
Network performance concerns how quickly data is transmitted
through a network. Bandwidth, measured in bits per second (bps)
or megabits per second (Mbps), refers to how much data can be
transmitted over a network in a given period of time.

Factors that can affect performance and potential bandwidth
include:

■ the number of users
■ the transmission media being used
■ interference and error rates.

Client–server and peer-to-peer networks
A client–server network has at least one main computer, the
server, which controls access to the system and stores programs
and files. Client machines connect to the server and request the
resources they require.
All of the computers in a peer-to-peer network have equal status.
Computers store their own programs and files, but security
permissions shared across the network allow users to access
the contents of another user’s computer and peripheral devices
attached to it.

Important words

You will need to know and
understand the following for
the exam:

Local area network (LAN)
Wide area network (WAN)
Network performance
Bandwidth
Ethernet
Client–server networking
Peer-to-peer networking
Network interface

controller/card (NIC)
Media Access Control

(MAC) address
Transmission media
Cables
Radio waves
Wireless access point (WAP)
Service Set Identifier (SSID)
Internet
Internet Protocol (IP)
Uniform Resource Locator

(URL)
Domain Name Server (DNS)
Domain name
Internet Protocol (IP)

address
Web server
The Cloud
Star network topology
Mesh network topology
Protocols
Wi-Fi
Internet Service Provider (ISP)
Standards
HTTP/HTTPS
Secure Socket Layer (SSL)
FTP
POP / IMAP / SMTP
TCP/IP
Layers

9781510484160.indb 69 27/05/20 7:21 PM

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

70

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

Network hardware
Various hardware devices are needed to create a LAN:

■ Network interface controller (NIC) to allow a device to communicate with a network. Each
NIC has a unique MAC address that allows it to be identified on the LAN.

■ Transmission media to allow devices to connect together:
● Copper wire is used in local wired networks.
● Fibre-optic cables are used to connect LANs over longer distances.
● Radio waves are used to connect devices wirelessly.

■ Wireless access points (WAPs) allow wireless devices to connect to a network.
■ Switches allow data to be passed between devices on a network.
■ Routers connect networks together.

The internet
The internet is a worldwide collection of computer networks linked together as a WAN.
The domain name server (DNS) enables websites to be accessed via their text-based address
(domain name), for example www.hoddereducation.co.uk. The DNS links the domain name to its
Internet Protocol (IP) address.

Websites are hosted on web servers. These are dedicated computers that are always connected
to the internet and are usually provided by web hosting companies.
The Cloud is effectively a network of servers that store data and run applications. Files and
applications can be accessed from any internet-connected location.

Network topologies
A network topology is the way in which devices are arranged and connected together.
In a star network topology, each computer is connected to a central point, which can be a switch
or a server. It is the most common network layout.
In a mesh network topology, every device is connected to every other device, either directly or indirectly,
and network traffic is shared between all devices. It is more commonly used for wireless networks.

1.3.2 Wired and wireless networks, protocols and layers

Modes of connection
Protocols are rules or standards that must be followed when data is sent between devices on a
network.
Ethernet is the protocol used to connect devices in a wired LAN.

9781510484160.indb 70 27/05/20 7:21 PM

http://www.hoddereducation.co.uk

71

RE
C

A
P

A
N

D
 R

EV
IE

W

Wi-Fi is a set of protocols that defines how network devices can communicate wirelessly using
radio waves. Wi-Fi can transmit at the 2.4 GHz frequency, which has a greater range but lower
transmission speeds compared to transmission at the 5 GHz frequency.
Bluetooth is another form of wireless protocol, which can be used over short distances using
ultra high frequency (UHF) radio waves.

IP addressing and MAC addressing
There are two types of address used in the transmission of data across a network.
Every device connecting to the internet is assigned an IP address to enable it to be located. The
address can change each time a device re-connects.

IPv4 addresses use a 32-bit number, which is broken down into four 8-bit sections each representing
a number between 0 and 255. An IPv4 address is usually written in denary with a full stop between
each section.

IPv6 addresses use a 128-bit number, which is broken down into eight 16-bit sections. IPv6
addresses are written using a hexadecimal character to represent each set of 4 bits, and with
each section separated by a colon.

Every network interface controller has a MAC address programmed into it when it is manufactured.
A MAC address is made up of 48 bits, shown as six groups of two hexadecimal digits separated by
colons, and it can never be changed. MAC addresses are used to identify specific devices on a LAN.

Standards
Standards are sets of rules that exist for various areas of computing, including file formats and
hardware. Some standards are set out by official organisations, and others become established
through common use.

Standards enable manufacturers to build hardware components or write software that will work
on different systems. Without standards you would probably only be able to use hardware and
software made by the same manufacturer.

Common protocols
There are a range of standard protocols used by applications such as web browsers and email
clients.

HTTP Hypertext Transfer Protocol defines the rules to be followed by a web browser
and a web server when requesting and supplying information.

HTTPS Hypertext Transfer Protocol Secure uses SSL to encrypt communications
between a web browser and a web server to ensure that they are secure.

FTP File Transfer Protocol defines the rules for transferring files between computers.
POP Post Office Protocol is used by a client to retrieve emails from a mail server. The

emails are downloaded to the device and then deleted from the server.

9781510484160.indb 71 27/05/20 7:21 PM

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

72

1.
3

Co
m

pu
te

r n
et

w
or

ks
, c

on
ne

ct
io

ns
 a

nd
 p

ro
to

co
ls

IMAP Internet Message Access Protocol allows multiple devices to have synchronised
access to mail on a mail server. Messages are read rather than downloaded and
can be organised and flagged.

SMTP Simple Mail Transfer Protocol defines the rules for sending email messages from
a client to a server, and then from server to server.

TCP/IP are the protocols used to transmit data across a network.

TCP Transmission Control Protocol splits the data from applications into smaller
data packets that can be sent across a network.

IP Internet Protocol adds a header to each data packet including the source and
destination IP addresses.

The concept of layers
Protocols are assigned to layers, each of which has a specific purpose to enable communication to
take place. When data is being sent, it passes through each layer in turn and is encapsulated with
more information. When a data packet is received each layer of information is read and decoded
in reverse order.

Function of the layer Relevant protocols
Allow communications between clients and servers HTTP/HTTPS

FTP

POP

IMAP

SMTP
Splits the data into packets TCP
Adds the IP address of the sender and recipient IP
Adds the MAC address of the sender and recipient,
and converts the data into electrical signals

Ethernet

Wi-Fi

There are several advantages to organising protocols in layers:

1 one layer can be developed or changed without affecting other layers
2 enables hardware and software manufacturers to develop different products that will all

work together

3 it is easier to identify and correct networking errors and problems.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 72 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

73

1.4

NETWORK SECURITY

1.
4.

1
Th

re
at

s t
o

co
m

pu
te

r s
ys

te
m

s a
nd

 n
et

w
or

ks

Network security is about keeping networks, computers and the files, data and programs
stored on them safe from attack, damage and unauthorised access.

1.4.1 Threats to computer systems and
networks

Threats to networks and computer systems can come both from internal and external sources,
and there are a number of different ways in which networks can be attacked. These include
the use of malware, social engineering and other direct attacks on a network.

Malware
Malware is any kind of malicious program that is installed on a computer system with the
intention to cause damage and disrupt its functionality or to steal information. It is usually
installed without the user’s knowledge.

Viruses

A virus is a computer program that is hidden within another program. The virus code is only
run when the host program is executed.

Viruses can delete data or change system files so that data becomes corrupted. Some viruses
fill up the hard drive so that the computer runs very slowly or even becomes unresponsive.

Viruses can insert themselves into other programs that can then be passed on. They are often
spread through attachments to emails, but may also be spread through files, programs or
games downloaded from a web page or by loading an infected memory stick or CD/DVD.

Worms

Worms are different to viruses as they do not need to be hosted in another program. They
often create a ‘back door’ so that a hacker can take over an infected computer.

Worms are self-replicating, which uses up the computer’s resources and causes other programs
to run slowly. They usually spread by sending themselves in emails to everyone in a user’s
address book. They can also travel to other computers within a network, which consumes
network bandwidth and affects performance.

Trojans

Trojans are programs that users are tricked into installing under the pretence that they are
legitimate and useful.

Some Trojans are just annoying, changing the desktop layout and adding new icons, but they
can also delete files and use back doors to send screenshots and key presses to a hacker’s
computer, allowing them to access your personal information.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

1.4.1 Threats to computer
systems and networks

➤	 Forms of attack

1.4.2 Identifying and
preventing vulnerabilities

➤	 Common prevention
methods

9781510484160.indb 73 27/05/20 7:21 PM

74

1.
4

N
et

w
or

k
se

cu
rit

y

Ransomware

Ransomware is malware that interferes with a user’s operation of a computer unless a sum of
money (ransom) is paid.

It encrypts the files on an infected computer and only decrypts them once payment has been
made. Sometimes the malware doesn’t actually encrypt anything but still scares users into
thinking that it has so that they hand over payment. Even when payment is made, there is no
guarantee that the files will be decrypted, and often they are not.

Spyware

Spyware is malware that comes packaged with other software such as free software that a
user downloads.

It gathers information about a user and sends it to the criminal. It includes programs such as
keyloggers that record all the user’s keystrokes to obtain passwords and other login details.

Pharming

Pharming is a form of attack where users are directed to a fake website.

There are two ways in which this might happen. Malware installed on a computer can send
lookup requests to a rogue DNS server rather than their ISP’s genuine DNS server, or malware
can infect the DNS server itself (known as DNS spoofing) so that everyone is directed to the
bogus site.

The rogue or ‘poisoned’ DNS server responds with the IP address for a server hosting a fake
copy of the website being visited. When users then enter their login details at the fake site
these are captured so that they can be used by hackers. Often, the fake website then redirects
the user onto the real version of the website and logs them in using the details they have just
provided. This means that they are unaware they have been attacked.

Social engineering
The weakest point of any computer system is the people that use it. Social engineering is
a form of security attack that involves tricking or manipulating people into giving away critical
information or access details. Fear is often used to put people off guard and make them more
likely to comply with instructions.

Phishing

Phishing uses fake emails and websites to trick people into giving away their sensitive data
and information. Emails usually claim or appear to be from a bank or building society, an
e-commerce site or an email provider.

They often ask the user to verify their account by clicking on a link or taking some other similar
action. Links often then take the user to a fake version of the website where login details, and
possibly credit and debit card details, can be captured.

Tech term

DNS server Relates
domain names to
IP addresses.

9781510484160.indb 74 27/05/20 7:21 PM

75

1.
4.

1
Th

re
at

s t
o

co
m

pu
te

r s
ys

te
m

s a
nd

 n
et

w
or

ks

Figure 1.4.1 Example of a phishing email

Pretexting

Pretexting, also known as blagging, is often done by phone but can also be carried out face to face.

Here, the criminal invents a scenario to persuade the victim to divulge information that they
might not do otherwise. Often, they will pretend to be from an official organisation such as
a bank, insurance company or the police, or to be another employee of the company or a
network administrator.

Shouldering

Shouldering, or shoulder surfing, involves finding out login details, passwords and PINs by
watching people enter them.

This could happen by looking over someone’s shoulder as they enter their PIN at a cashpoint
or checkout, or even by using recording equipment.

Brute force attacks
A brute force attack is where a hacker attempts to crack a password by systematically
trying different combinations of letters and numbers until the correct one is found.

Automated software is generally used to try millions of different passwords every second. Often
brute force attacks begin with a dictionary attack, where lists of previously cracked passwords
from other sites are tried before attempting every possible combination of characters.

Success is based on the amount of computing power available rather than any specialist
techniques or algorithms.

Denial of service (DoS) attacks
Denial of service (DoS) attacks are designed to bring down servers or websites by
flooding them with superfluous bogus requests such as repeated attempts to login. This uses
up internet bandwidth and prevents the servers from responding to legitimate requests.

A distributed denial of service (DDoS) attack uses a large number of compromised
machines that have been infected with malware. These ‘zombie’ computers can be used to
form a botnet so that a huge number of login requests can all be sent at the same time.

DoS or DDoS attacks may be used to extort money from a firm to stop the attacks, or may be
used by hacktivists to punish organisations that they deem to be unethical.

Tech term

PIN Personal
 identification number;
used for credit and debit
cards.

Tech terms

Botnet A collection of
computers infected by
malware and controlled
by hackers.

Hacktivists Individuals
who misuse computers
for a socially or politically
motivated reason.

9781510484160.indb 75 27/05/20 7:21 PM

76

1.
4

N
et

w
or

k
se

cu
rit

y

Data interception and theft
Data is a very valuable commodity. Personal data can be used to access bank accounts or in
identity theft, while the financial data or trade secrets of a company can be exploited by others
to gain a competitive advantage. Data interception and theft can occur in several ways.

Packet sniffing

Packet sniffing involves intercepting data using packet analysers as it is being transmitted
across a network. These analysers read and display the contents of each data packet, enabling
sensitive data such as login names, passwords and credit card details to be stolen.

The software used can manipulate the network switch so that all packets are sent to the
sniffing device, which then sends them on to their intended destination once they have been
intercepted and read. This means that no one is aware that any interception has taken place.

Packet sniffing can be carried out with relative ease on wireless networks as the signals can
be accessed from distances of up to 300 metres, making it easy for the perpetrators to avoid
detection.

Man-in-the-middle (MITM) attacks

A MITM attack involves intercepting a device’s connection to the internet. Often this is
achieved by luring users into using a fake Wi-Fi hotspot.

The operator of the fake Wi-Fi network can then sniff all of the packets to gain personal
information and to see which websites are being visited. This method also allows phone
numbers to be captured, which can then be used in further attacks.

The concept of SQL injection
Many websites use databases to store the details of users. Structured Query Language (SQL)
is used to search these databases, for example to check that a user’s login details and password
are correct.

SQL injection can be used to bypass security and circumvent the need to enter legitimate
login credentials, thus allowing hackers to gain access to the database. From here they can steal
valuable data such as names, addresses and bank details.

SQL statements often operate on data input into fields on online forms, and so inputting
a syntactically valid SQL expression instead of a username can cause the commands to be
executed.

Beyond the spec

SQL queries are covered in Chapter 2.2 and the information covered there is needed for
the examinations.
However, here is an example of an SQL statement on a server script to select a user with
a given user id:
txtSQL = "SELECT * FROM Users WHERE UserId = " + txtUserID;

If a user enters 9 or 1=1 into the UserID field, the SQL statement will look like:

SELECT * FROM Users WHERE UserId = 9 OR 1=1

(The 9 could be any value.)

This will cause all rows from the ‘Users’ table to be returned because * is a wildcard that
means ‘everything’ and 1=1 is always TRUE so the statement is valid.

Tech terms

Data packet A small
chunk of data that is
transmitted across a
network.

Network switch The
hardware that allows
multiple devices to
connect together to
form a network.

Tech term

SQL A language
specifically designed
for interactions with
databases.

9781510484160.indb 76 27/05/20 7:21 PM

77

1.
4.

2
Id

en
tif

yi
ng

 a
nd

 p
re

ve
nt

in
g

vu
ln

er
ab

ili
tie

s

Knowledge check

1 Match the type of malware to the description of how it is spread:
Virus Malware disguised as legitimate software

Spyware Malware that comes packaged with other software

Worm Malware that is spread through infected files

Trojan Malware that is self-replicating and spreads via email

2 Explain what is meant by pharming.
3 Pretexting is a form of social engineering. Describe how it is used to gain personal data.
4 Explain what is meant by a brute force attack.
5 Identify and describe two ways in which data transmissions on a network may be

intercepted and stolen.
6 Describe how SQL injection can be used to access a database.

1.4.2 Identifying and preventing
vulnerabilities

There are a number of different methods that can be used to limit threats and protect
networks and computer systems from unauthorised access.

Penetration testing
Penetration testing is used to test a system or network in order to identify vulnerabilities
in its security that an attacker could exploit.

Testers take on the role of hackers and try to gain unauthorised access in a controlled attack.
Good penetration testing also assesses the security awareness of users to see how likely they
are to fall for social engineering ploys, and demonstrates the effectiveness of network security
policies. It may also include checking the organisation’s ability to respond to security incidents
and to recover any data that has been lost or compromised following an attack.

Anti-malware software
Anti-malware software is designed to detect and remove malware. It protects systems in
several ways:

● It performs real-time scans of incoming network traffic to detect whether they have been
infected with a virus.

● It performs periodic scans of the whole system looking for malicious applications.

● If a virus or other malware is detected or manages to install itself it is quarantined. This
prevents it from running and allows users to attempt to clean or remove it.

9781510484160.indb 77 27/05/20 7:21 PM

78

1.
4

N
et

w
or

k
se

cu
rit

y

Beyond the spec

◆ Anti-malware software often uses heuristic analysis which is designed to detect
previously unknown viruses as well as new variants of viruses already in circulation. It
involves de-compiling a suspect program to examine the source code and compare it
to that of viruses already in the database. The code is flagged as a probable threat if a
particular percentage of the code matches anything already known about.

◆ Suspect code can also be tested in a sandbox to simulate what would happen if the
program was allowed to run. The code is examined to look for suspicious actions
such as overwriting code and self-replication.

Anti-malware software needs to be able to get regular updates from the internet as it relies
on using up-to-date definitions of the viruses and malware that are known about and how to
identify them by their code.

Firewalls
A firewall is designed to prevent unauthorised access to a network, and can be provided by
either a hardware device or a piece of software.

Firewalls inspect and filter incoming and outgoing data packets to ensure that they meet the
security criteria that have been configured. If a packet does not meet the security criteria it is
not allowed through. Criteria may include:

● the MAC address of the computer sending the data

● the type of data been sent or received, for example .exe files

● IP address filtering to prevent users and programs from accessing specific internet sites.

Firewalls protect a network or computer from attempts by hackers to break in from the
outside. However, they also protect against attempts by malware to send data packets out of
the network from infected machines.

User access levels
Users of a network are often arranged into user groups. Each group has different user access
rights that determine what software, hardware and files they are permitted to access. For
example, on a school network staff may be able to access certain folders that pupils cannot.

User access levels are an important way of avoiding attacks caused by the careless actions
of users. Preventing normal users from installing new software means that malware cannot
be installed even if a user is lured into clicking on a suspicious link. In addition, access to
confidential information can be limited to only those who need it, which helps to protect
against insider attacks.

Passwords
Passwords help to prevent unauthorised access to a network or computer. However, they
are only effective if they remain secret and are not easy to crack by brute force attacks. They
should not be used for multiple accounts and should never be written down.

Long passwords that use a combination of letters, numbers and symbols will take longer to
guess in a brute force attack. As hackers can potentially find out information about users, such
as their dates of birth and names of family members, these should never be used in passwords.

Tech terms

MAC address A unique
number that identifies
the physical device
connected to a network.

IP address A unique
number that represents
the location of the
device on the internet.

Tech terms

Heuristic analysis A
method of detecting
viruses by examining
code for suspicious
properties.

Sandbox A test
environment that isolates
untested code from
production environments.

9781510484160.indb 78 27/05/20 7:21 PM

79

1.
4.

2
Id

en
tif

yi
ng

 a
nd

 p
re

ve
nt

in
g

vu
ln

er
ab

ili
tie

s

Two-factor authentication (2FA) can be used to add an extra layer of security to the use of
passwords. In addition to providing a username and password, the user has to enter a code
that only they have access to. Usually this is a code that has been sent to another device they
have possession of, such as a mobile phone.

Passwords are gradually being replaced by biometric authentication methods such as
fingerprint readers and facial recognition. Biometric factors can also be used as the second step
in two-factor authentication.

Encryption
Encrypting data means that it cannot be read by unauthorised persons, even if they manage
to access the data. Encrypted data requires the correct key to be used in order to be decrypted.

Wi-Fi networks should use secure encryption, such as WPA2, to ensure that network packets
cannot be intercepted and read. Files on a network or removable storage device can also be
encrypted so that they cannot be read if someone manages to gain access to them.

Physical security
Physical security is about protecting hardware, software, networks and data from physical
actions that could cause harm. These include:

● burglary and theft

● fire, flood and natural disasters.

Security measures might include keeping servers in a locked room that can only be accessed
by network managers, and ensuring that backups are kept off-site in a different secure location.

Threats and how they can be prevented
A range of different prevention methods can be used to guard against each different type of
threat.

Threat Prevention methods

Malware ● Install anti-virus and anti-spyware software.
● Ensure that the operating system is up to date.
● Implement user access levels to prevent standard users from being able to install software.
● Only download programs from trusted websites.
● Educate users about the risks of opening emails and attachments from unknown sources.

Social engineering ● Educate users so that they are aware of the tactics of criminals and can guard against them.
● Ensure that network and security policies are followed.

Brute force attacks ● Use long passwords that include special characters.
● Use complex passphrases rather than single words.
● Use a password manager.
● Networks and websites can limit the number of login attempts allowed.
● Networks and websites can use two-factor authentication.

Denial of service
attacks

● Install a firewall to reject packets that originate from the same source or that have identical contents.
● Configure a firewall to restrict the number of packets that can be accepted within a particular time frame.

SQL injection ● Use input validation to set password and username rules that don’t permit characters which can be used
in SQL injection attacks.

● Use input sanitisation to remove special characters and SQL command words from an input before
processing it.

Data interception and
theft

● Use strong encryption, especially on Wi-Fi networks; do not use unencrypted free public Wi-Fi networks
● Use MAC address authentication on networks so that only known devices can connect.
● Ensure that websites are using HTTPS connections so that if data is intercepted it cannot be read.

Tech terms

Biometric
authentication A
security process that
relies on the unique
biological characteristics
of an individual to verify
that they are who they
say they are.

Key A string of randomly
generated characters
(similar to passwords
except they are generated
by algorithms rather
than users).

9781510484160.indb 79 27/05/20 7:21 PM

80

1.
4

N
et

w
or

k
se

cu
rit

y

Knowledge check

7 Explain how anti-malware software helps to protect a system.
8 Identify two forms of attack that the use of a firewall could help to prevent.
9 Explain why encryption should be used on wireless networks.

9781510484160.indb 80 27/05/20 7:21 PM

81

RE
C

A
P

A
N

D
 R

EV
IE

W

1.4.1 Threats to computer systems and
networks security
There are various ways in which a computer system or network can be
attacked including:
■ malware
■ social engineering
■ brute force attacks
■ denial of service attacks
■ data interception
■ SQL injection.

Some attacks disrupt the functionality of the computer or network,
while others are designed to gather sensitive personal information.
Data is a very valuable commodity. Stolen usernames and passwords
allow criminals to access bank accounts and gain private information,
which can then be used to commit crimes against the victims without
their knowledge.

There are several different types of malware:

Type of malware What it does
Virus Is hidden inside, or attached to, another file or program.

Deletes or corrupts data and files.
Worm Is self-replicating.

Slows the computer and creates back doors.
Trojan Looks like legitimate software.

Slows the computer and creates back doors.
Ransomware Denies a user access to their system until a ransom is paid.
Spyware Is often bundled with free software.

Logs activity and keystrokes and sends these back to a criminal.
Pharming Redirects a user to a spoof website without their knowledge by modifying

DNS entries.

Social engineering involves tricking or manipulating people into giving
away critical information or access details. Methods include phishing,
pretexting and shouldering.

RECAP AND REVIEW
1.4 NETWORK SECURITY

Important words

You will need to know and
understand the following
for the exam:

Malware
Social engineering
Brute force attack
Denial of service (DoS)
Data interception and

theft
SQL injection
Penetration testing
Anti-malware software
Firewall
Access rights
Passwords
Encrypting
Physical security

9781510484160.indb 81 27/05/20 7:21 PM

1.
4

N
et

w
or

k
se

cu
rit

y

82

1.
4

N
et

w
or

k
se

cu
rit

y

Brute force attacks involve the use of automated software to crack passwords in order to gain
access to a system.
Denial of service attacks occur when a server is flooded with bogus requests in order to bring it
down.
Network communications can be intercepted on their way to their destinations. Data interception
and theft can occur through packet sniffing or the use of fake Wi-Fi hotspots.
SQL injection uses SQL commands entered into input fields on online forms to gain access to
databases.

1.4.2 Identifying and preventing vulnerabilities
Penetration testing is used to identify weaknesses and vulnerabilities in computer systems so
that they can be addressed.
User-based security includes:
■ the use of strong passwords
■ the use of user access rights
■ preventing the use of removable storage devices.
Network-based security includes the use of:
■ firewalls to control the transmission of data in and out of the network and to manage which

devices can be connected
■ anti-malware software to detect and eliminate malicious software
■ encryption on wireless networks to protect files and data
■ regular backups to avoid data loss.
Physical security involves protecting hardware, software, networks and data from physical
actions that could cause harm, such as theft, fire, flood and natural disasters.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 82 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

83

1.5

SYSTEMS SOFTWARE

1.
5.

1
O

pe
ra

tin
g

sy
st

em
s

There are two main categories of software used on computers: systems software and application
software. Systems software controls the hardware inside the computer and provides
an interface for users to interact with it and is comprised of the operating system and utility
software. Application software is the end-user programs that are designed to perform
specific tasks, such as word processing, photo editing, or used for entertainment such as playing
games or watching videos.

1.5.1 Operating systems

Operating systems are found in almost all computing devices, from video game consoles
to mobile phones, tablets to desktops, data servers to supercomputers. They control the general
operation of the system or device and provide a way for users to interact and run programs.

Well-known operating systems include:

● Windows

● macOS

● Linux

● Ubuntu

● Android

● iOS.

The purpose and functionality of operating
systems
The operating system (OS) manages the hardware in a computer and provides an environment
for applications to run. It is essential to the function of any computer.

The functions controlled by the OS include:

● a user interface to allow the user to interact with the system

● memory management to control the use of the RAM and to share processor time
between different programs and processes

● peripheral management to control peripheral devices using drivers

● user management to control who can access the computer and what resources they
can use

● file management to allow users to organise their work into folders and subfolders.

User interface

The user interface allows the user to interact with the computer system. Most modern OSs
provide a graphical user interface (GUI), which uses small icons to represent the files,
devices and applications and allows the user to interact by clicking, dragging or touching them.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

1.5.1 Operating systems

➤	 The purpose and
functionality of
operating systems

1.5.2 Utility software

➤	 The purpose and
functionality of utility
software

➤	 Utility software:
encryption,
defragmentation and
compression

9781510484160.indb 83 27/05/20 7:21 PM

84

1.
5

Sy
st

em
s s

of
tw

ar
e

Most systems use the Windows, Icons, Menus and Pointers (WIMP) interface. Here
applications are shown in windows, with programs and files represented by icons. Menus allow
you to access features and other options, and interaction is provided by moving a pointer (or
cursor) which is controlled by a mouse or touch pad.

Programs run in windows that
can be re-sized and moved

Menus are used to select
options and features

Clickable icons are used to represent programs and documents

A pointer is used
to interact with
elements on
the screen

Before GUIs were developed, users had to use the command line interface (CLI), which
involved typing in all of the commands via a keyboard. This included the commands to load
programs, copy, delete and move files, and print. This meant that users had to learn all of the
commands in order to be able to type them in correctly and use them.

It is still possible to use a CLI on modern operating systems by running the Command
Prompt in Windows, or opening the Terminal on Mac or Linux systems. They tend to be
used by network managers who want to do things that are not possible using the standard
GUI. Commonly used sequences of commands can be grouped together into batch files
(Windows) or shell scripts (Linux) so that a single command can cause multiple actions.

Increasingly, we are able to control devices by speaking to them. Natural language interfaces
include Siri on macOS and Cortana on Windows, and these allow the user to control some
software, as well as dictating text rather than needing to type it. Alexa integrates with some
streaming cloud-based services as well as devices around the home, allowing you to control
them by voice.

Memory management and multitasking

One of the key roles of the operating system is to manage the available memory. Any program
running on a system needs to be loaded into RAM, and the memory manager controls
whereabouts the program and its data will go, allocating memory blocks according to
the needs of the program. The CPU program counter is then set to the memory location of the
first instruction in the program. When a program finishes or the data is no longer needed the

Tech terms

Batch files, shell scripts
Files that execute a series
of command line inter-
face instructions.

Figure 1.5.1 A graphical user interface
[Google and the Google logo are registered trademarks of Google LLC, used with permission]

9781510484160.indb 84 27/05/20 7:21 PM

85

1.
5.

1
O

pe
ra

tin
g

sy
st

em
s

memory manager frees up the space for reuse. Applications can only access the memory that
has been allocated to them, and cannot access memory that is reserved for other programs.

The OS uses buffering to set aside memory for the temporary storage of data. For example,
a process may output data which can be temporarily stored in the buffer so that the next
process can be executed.

It is normal for several applications to be loaded into RAM and be running simultaneously and
this is called multitasking. The activities that the programs perform are called processes.
Although the programs appear to be running concurrently, only one process can be run by
the CPU at any one time so the OS shares out processor time between each application. The
process manager prioritises all of the tasks and allocates CPU time for each process to be
completed.

Peripheral management and drivers

Peripherals are any hardware components that are not part of the CPU. These include input
devices such as a keyboard, mouse, trackpad, microphone, webcam and scanner, and output
devices such as a monitor, printer and speakers. Storage devices such as external hard drives
and USB memory sticks are also peripheral devices.

All peripheral devices are controlled by the OS using programs called device drivers. These
act as a translator to allow the CPU and the devices to communicate correctly. Without
drivers the computer would not be able to send and receive data correctly between hardware
devices. Each device has its own driver and the correct driver has to be installed for the specific
model and operating system being used.

The device driver handles the translation of requests between a device and computer, and
defines where incoming or outgoing data will be stored. When data is received from an input
device, or sent to an output device, it is usually temporarily stored in a buffer. For example, a
document being sent to a printer may be held in a print buffer from where the printer can
draw the characters at its own pace. This is known as spooling. The device driver will also wake
up a device when it is needed and put it back to sleep when it is not.

User management

The ability for a user to access a system is also controlled by the operating system. The OS
can allow individual users to be created or deleted. Access to the system is usually based
on a username and password that match those of known users. The OS will then allocate
permissions for access to files and folders, applications, settings and other features based on
the user’s access rights.

Control of access rights is often used to ensure that a standard user cannot install applications
or change a master password. It may also be used to restrict access to the internet.

File management

The operating system also controls all of the different files on the system, such as documents
and executable programs. It creates a folder and file structure that makes it easier for users to
organise and find data in a systematic way. It allows users to create, name, move and save files
within this structure. The file manager then keeps track of where the specific files and folders
are physically located in secondary storage. It also determines the file type, so that it can either
be executed or sent to an application to be opened.

On networks and shared computers, file management is also used to control file
permissions. These control who can see or open a file, write to a file or edit it, and who can
delete a file. This helps to keep a system secure.

Beyond the
spec

A File Allocation Table
(FAT) is used to keep
track of where files are
stored, by maintaining
a table that provides a
map of the clusters of
memory that a file has
been saved in.

9781510484160.indb 85 27/05/20 7:21 PM

86

1.
5

Sy
st

em
s s

of
tw

ar
e

Knowledge check

1 State two functions of an operating system.
2 Explain how a graphical user interface allows a user to interact with a computer.
3 Identify another type of user interface found on operating systems.
4 Explain how an operating system manages memory in a computer system.
5 Explain what is meant by device drivers.
6 Explain why file management is used.

1.5.2 Utility software

Utility software is a collection of programs, each of which does a specific housekeeping task
to help maintain a computer system. Most computers have utility software installed alongside
the operating system.

The purpose and function of utility software
Utility software is not essential for the computer to work, but it helps to configure the system,
analyse its performance and make changes to ensure that it is running efficiently.

Types of utility software include:

● encryption

● defragmentation

● data compression.

Encryption software

Encryption is the scrambling of data into a form that cannot be understood if it is accessed
by unauthorised users. It is used to protect data from unauthorised access. The encryption
process uses an algorithm and a key to transform the plaintext into ciphertext. The same
algorithm and key are needed to decode the information.

Modern operating systems have built-in encryption utilities that enable the user to encrypt
specific files or entire drives – for example BitLocker on Windows and File Vault on macOS.
Files on systems like these are automatically decrypted when they are accessed by an
authorised user.

It is especially important that sensitive data copied onto laptops and portable storage devices,
such as flash memory drives and external hard drives, is encrypted as there is more likelihood
that these devices could be lost or stolen. This usually requires the use of separate encryption
software which can be used to encrypt specific files with a chosen key. It is then possible for
someone else to decrypt the files providing they have the same encryption software and the
correct key.

Defragmentation

When data is stored on a magnetic hard disk drive, it is saved to different areas of the disk
depending on where there is space available. If the data file is larger than the free space available
in one part of the disk, it is split into separate blocks of data that are saved in different places.
This is called fragmentation.

Tech term

Ciphertext Encrypted
text.

9781510484160.indb 86 27/05/20 7:21 PM

87

1.
5.

2
U

til
it

y
so

ft
w

ar
e

Over time the contents of a hard disk become increasingly fragmented and this begins to
affect performance. This is because hard disk drives are mechanical devices and the read/write
head has to move to the correct physical location on a disk to read its contents (see section
1.2.2). When the data is fragmented, the disk needs to be accessed more frequently to read all
of the data.

Defragmentation is the process of organising and moving the data so that data belonging
to the same file is grouped together in adjacent blocks and stored in one location on the hard
disk drive, which makes it quicker to access. Defragmentation also groups all of the free disk
space together so that new files can be stored in one place. This improves the performance of
the computer.

Fragmented data

Defragmented data

Over time, the contents on a hard drive becomes fragmented.

Defragmentation reorganises and moves the data blocks.

Data that belongs to the same file is grouped together in
adjacent blocks.

Free space is grouped together at the end of the disk.

Figure 1.5.2 The process of defragmentation

It is important to note that there is no need to perform defragmentation on solid-state drives.
This is because SSDs do not have any moving parts and so having data split up around the
memory locations does not affect the read/write times. In fact, because SSDs have a limited
number of read/write cycles, performing defragmentation is likely to reduce the life of an SSD.

Data compression

Data compression uses algorithms to reduce the size of files so that they take up less storage
space. There are two types of compression, which are known as lossy and lossless.

Lossy compression reduces the file size by deleting some of the data. It can be used on items
such as photographs where the loss in detail will not be noticeable. As the data is completely
removed from the file it can never be restored back to its original form.

Lossless compression must be used if a file, such as a text file or document, needs to be
restored exactly back to its original form. Lossless compression uses algorithms to look for
patterns and repeated elements in a file. These are then stored in a dictionary from where they
can be referenced by a number. This enables data to be compressed and then restored to its
original form.

9781510484160.indb 87 27/05/20 7:21 PM

88

1.
5

Sy
st

em
s s

of
tw

ar
e

Compressed files can be transmitted much more quickly over the internet as the file size is
smaller and therefore requires less bandwidth. Compression can also be useful when emailing
files as attachments as there is usually a limit to the size of a file which can be transmitted.
Compressing, or zipping, the file can reduce it to an acceptable size.

For more on file compression see section 1.2.5.

Knowledge check

7 Define what is meant by utility software.
8 Give three examples of utility software.
9 Explain why encryption software is used.

10 State one problem caused by a fragmented disk.
11 Identify two situations where compression software might be used.

9781510484160.indb 88 27/05/20 7:21 PM

89

RE
C

A
P

A
N

D
 R

EV
IE

W

1.5.1 Operating systems

The purpose and functionality of operating
systems

The operating system (OS) manages the hardware in a computer
and provides an environment for applications to run. The OS controls
different aspects of the running of the computer or device.

User interface
This allows the user to interact with the computer system. Most
modern OSs provide a graphical user interface (GUI) which uses
windows, icons and menus that can be controlled by a pointer.

Before GUIs were developed users had to use the command line
interface (CLI) into which commands are typed, and these still tend
to be used by network managers who want to do things that are not
possible using the standard GUI.
Increasingly we are able to use our voices to control aspects of
computer devices.

Memory management and multitasking
The OS manages the available memory in the RAM. The validity of a
request is verified and then blocks of RAM are allocated to a program
and its data. When a program finishes, or the data is no longer
needed, the memory manager frees up the space for reuse. The OS
uses buffering to set aside memory for the temporary storage of
data so that it can be used by different hardware devices.
Several programs running at the same time is known as multitasking.
Only one process can be completed at a time and so the process
manager prioritises all of the tasks and allocates CPU time for each
process to be completed. As this happens very quickly it appears as
if the programs are running simultaneously.

RECAP AND REVIEW
1.5 SYSTEMS SOFTWARE

Important words

You will need to know and
understand the following
for the exam:

Systems software
Application software
Operating systems
User interface
Memory management
Peripheral management
User management
File management
Graphical user interface

(GUI)
Windows, Icons, Menus

and Pointers (WIMP)
Command line interface

(CLI)
Buffering
Multitasking
Device drivers
Access rights
File permissions
Defragmentation
Lossy compression
Lossless compression

Extra resources

A free set of practice questions
accompanies this section and
is available online at:
www.hoddereducation.co.uk/
OCRGCSEComputerScience

These practice questions have
not been produced either by
OCR or by the OCR Principal
Examiner. They are also not
endorsed by OCR and have
not been subject to any OCR
quality assurance processes.

9781510484160.indb 89 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience
http://www.hoddereducation.co.uk/OCRGCSEComputerScience

1.
5

Sy
st

em
s s

of
tw

ar
e

90

1.
5

Sy
st

em
s s

of
tw

ar
e

Peripheral device management and drivers
All peripheral hardware devices are controlled by the OS using programs called device drivers.
These act as a translator to allow the CPU and the devices to communicate correctly.

User management
User management controls who can access a system. Accounts can be created or deleted for
individual users, with different access rights controlling the files and software they can access.
This helps to keep the system secure.

File management
The OS creates a folder and file structure that makes it easier for users to organise and find data
in a systematic way. It then keeps track of the location of files on disks and other storage devices
so that they can be retrieved when needed.

1.5.2 Utility software

The purpose and function of utility software
Utility software is a collection of programs each of which does a specific housekeeping task to help
maintain a computer system.

Encryption software
This is used to encode data so that it cannot be understood if it is intercepted by unauthorised
users. The encryption process uses an algorithm and key to transform the plaintext into ciphertext.
The same software and key are needed to decrypt the data.
It is possible to encrypt specific files or whole drives depending on what is needed. In addition, data
on portable and removable storage devices should be encrypted.

Defragmentation
Over time, data on a hard drive becomes fragmented. Parts of a file are saved to different areas
of the disk where there is free space. This slows down the computer as more disk accesses are
needed to read all of a file. Defragmentation software reorganises the files, putting all of the free
space together and all of the parts of the same file together. This improves performance.

Data compression software
Data compression software uses algorithms to reduce the size of files so that they take up less
storage space. There are two types of compression known as lossy and lossless. Compression
is useful in freeing up storage space. It is also useful when transferring files across a network as
smaller files require less bandwidth.

9781510484160.indb 90 27/05/20 7:21 PM

91

1.
6.

1
Et

hi
ca

l,
le

ga
l,

cu
ltu

ra
l a

nd
 e

nv
iro

nm
en

ta
l i

m
pa

ct

1.6.1 Ethical, legal, cultural and
environmental impact

The impacts of digital technology on wider
society
The widespread use of computer technology in all aspects of daily life has brought many
benefits for the individual and society. Computer systems are involved in most human
activities. The list of how computer systems affect us is endless but a few examples will show
something of the extent:

Safety Guiding aircraft, controlling trains, supporting signalling systems, monitoring
patient body signs

Travel Smartphone apps, GPS, train and bus timetables, flight bookings

Business Orders, stock control, payroll

Retail Online ordering of more or less anything, logistic systems that control the
delivery of goods

Entertainment DVDs, Blu-Ray, online film and television services for home and mobile

Communication Email, chat, social networks, business transactions, smartphones

Education Virtual Learning Environments, online exam marking, distance learning,
unlimited sources of information on the web

Politics and
government

Online campaigns, voting (in some countries), payment of taxes, passport and
visa applications

Science Number crunching, simulations, visualisations, distributed processing of data for
research (e.g. research into genes/DNA)

However, alongside these benefits the widespread use of computer technology has also
generated various problems, from computer crime to issues with the freedom and privacy of
the individual. The fact that we depend upon computer technology in so many aspects of our
daily lives makes us all vulnerable to at least some of these problems.

Ethical issues

Ethics refer to what is right and wrong. While most people probably agree about most things
that constitute ethical behaviour, there is not always a definitive definition. The ethical use of
computer technology is about acting in a responsible way and ensuring that no harm is caused
to others. Ethics are not the same as legalities – something may be immoral but not illegal.
However, a good legal system will be based on an ethical approach.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

1.6.1 Ethical, legal, cultural
and environmental impact

➤	 Impacts of digital
technology on wider
society

➤	 Legislation relevant to
computer science

1.6 ETHICAL, LEGAL, CULTURAL
AND ENVIRONMENTAL
IMPACTS OF DIGITAL
TECHNOLOGY

9781510484160.indb 91 27/05/20 7:21 PM

92

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

Ethics are to some extent a personal thing but there are codes of ethics laid down by various
organisations including associations of computing professionals. BCS (British Computer
Society) has some fairly typical ethical standards that it recommends computing professionals
should adhere to.

They include not undertaking work that is beyond the individual’s capability, not bringing the
profession into disrepute, avoiding injuring others and not taking bribes.

Another organisation, the Computer Ethics Institute, lists ten commandments for computer
ethics:

1 Thou shalt not use a computer to harm other people.

2 Thou shalt not interfere with other people’s computer work.

3 Thou shalt not snoop around in other people’s computer files.

4 Thou shalt not use a computer to steal.

5 Thou shalt not use a computer to bear false witness.

6 Thou shalt not copy or use proprietary software for which you have not paid.

7 Thou shalt not use other people’s computer resources without authorisation or proper
compensation.

8 Thou shalt not appropriate other people’s intellectual output.

9 Thou shalt think about the social consequences of the program you are writing or the
system you are designing.

10 Thou shalt always use a computer in ways that ensure consideration and respect for your
fellow humans.

Stakeholders are groups of people who have an interest in, or might be affected by, a
particular use of technology. Different stakeholders may have different views about the uses of
technology. This will have an impact on whether they consider that use to be ethical.

Here are some examples of uses of digital technology and the positive and negative ways in
which they might be viewed by different stakeholders – and, therefore, whether or not they
would be considered ethical.

The use of CCTV cameras in public places to monitor behaviour:
+ It is a form of security that can be used to solve crimes and keep us safe on the streets.

+ Live facial recognition can be used to identify and locate criminals.

− It is a ‘big brother’ approach, constantly tracking what we do and where we go.

− It is an invasion of privacy.

The ability to track mobile phone signals:
+ It is useful for finding friends.

+ It can provide valuable evidence for the police.

− When we take a picture the location and time are recorded.

− There are apps that track our location at all times.

Logging the activities and the use of computers and phones in the workplace:
+ It enables the employer to monitor the effectiveness of an employee.

+ It provides insight into working patterns.

+ It can reduce the risk of employees using the organisation’s facilities for illegal or
unacceptable purposes (e.g. monitoring social media posts).

9781510484160.indb 92 27/05/20 7:21 PM

93

1.
6.

1
Et

hi
ca

l,
le

ga
l,

cu
ltu

ra
l a

nd
 e

nv
iro

nm
en

ta
l i

m
pa

ct

− It is an intrusion into the lives of the employee.

− It results in constant pressure to perform at work.

Using social media to make friends and keep in contact with other people:
+ You can share recent activities to keep people up to date with what you like and what you

are doing.

− Trolling and cyber bullying are attempts to cause someone distress by posting insulting or
threatening messages and can be very unpleasant.

− Unguarded comments or inappropriate images posted on social media are available to a
wide audience and may be seen by family, friends, work colleagues or employers.

Knowledge check

1 Identify two ways that individuals might be monitored in their daily life.
2 What issues may result from unwise posts on a social media site?

Legal issues

The widespread use of computers has had a legal impact and new laws have had to be
constructed. Computers are associated with a wide range of existing and new criminal activities
including:

● unauthorised access to data and computer systems for the purpose of theft or damage

● identity theft

● software piracy

● fraud

● harassment, such as trolling.

Various laws describe the rules that computer users must obey. These laws are designed to prevent
the misuse of computer systems, and they can vary from country to country. It is a criminal offence
to not follow laws. Laws in the UK will be considered in greater detail later on in this chapter.

The internet does not belong to anyone nor is it based in one country, so it is not governed
by one country’s set of laws. There is a lot of debate about whether the internet should be
policed – and even whether it could be.

Cultural issues

Culture refers to the ideas, behaviour, beliefs and values of a group of people. The use of
computers has had a widespread impact on culture and society and it is now almost impossible
to imagine life without them. In particular they have had a huge impact on social interaction
and how we access information and entertainment.

● Mobile devices are used by most people and have changed the way that people interact
with each other.

● Almost every industry has been affected or disrupted by digital technology. For instance,
streaming services provide an increasing proportion of our entertainment including
television, gaming and music. These industries are completely different now compared to
20 years ago.

● The use of contactless payment methods has increased dramatically, reducing the need for
cash.

● Increased use of online services and retailing is having a dramatic effect on city centre high
streets, with many bank branches and retail outlets closing.

9781510484160.indb 93 27/05/20 7:21 PM

94

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

● There are widespread effects on our daily and working lives, with our online activity
monitored and computers fully embedded in the workforce.

● It could be argued that a desire for the latest technology – particularly mobile phones –
encourages a ‘disposable’ culture.

Computers are used throughout the workforce, in many cases making old roles redundant but
introducing new ones:

● Automated assembly lines: for instance, instead of a human welder making cars, factories
now require a technician to maintain the robots.

● Online shopping: instead of a shop assistant we now use automated warehouses with
workers collecting and packing objects.

● Online banking: we now use automated telephone systems and no longer need as many
high street banks and the associated workforce.

● Will driverless cars in the future mean we no longer need people to drive taxis and
lorries?

Figure 1.6.1 Robots building a car

Many organisations collect data about individuals:

● Searches on the internet and social media are monitored and analysed by companies to
understand consumer behaviour and focus their advertising for individuals.

● Social media activity, financial activity (e.g. use of credit cards), use of passports and internet
search history details may be monitored by governments to track criminal or terrorist
activity.

● Medical data is collected and analysed by medical researchers to develop new treatments
for various conditions.

Censorship and the internet
Censorship is the deliberate suppression of material by an organisation or government. This
may include:

● material considered to be socially unacceptable

● information that the organisation or government regards as dangerous.

9781510484160.indb 94 27/05/20 7:21 PM

95

1.
6.

1
Et

hi
ca

l,
le

ga
l,

cu
ltu

ra
l a

nd
 e

nv
iro

nm
en

ta
l i

m
pa

ct

Access to websites is controlled by blacklists, which keep a record of unacceptable websites
and monitor web pages to see if some or all of the content should be blocked.

The extent to which the internet is censored varies from organisation to organisation and
from country to country. Governments often take differing views about what is acceptable
and what is not.

The debate is about where to draw the line between protecting the public and infringing their
rights to free speech and access to information.

At a local level, schools may filter content to protect children from unsuitable content. At a
national level some countries impose very strict filtering of content in order to prevent the
population from debating political or cultural issues that it does not approve of.

Automated decision-making
Computers are used for automated decision-making by analysing data to reach a decision
about what action to take. It is used in situations where decisions have to be made frequently
and rapidly based on electronic evidence. These systems use complex algorithms to reach a
decision. It is important to get these algorithms right in order to avoid incorrect decisions,
which in some circumstances have serious consequences. However, automated decision-
making can also make some processes very impersonal.

● Electrical power distribution requires rapid responses to changing demand.

● Emergency services use algorithms when responding to major incidents in order to deploy
resources quickly and effectively.

● Stock market trading, also known as algorithmic or automated trading.

● Industrial plant automation, for example chemical plants or distribution centres.

● Airborne collision avoidance systems in planes.

● Driverless cars.

● Banks use algorithms to decide whether someone can have a bank account or credit card
based on their financial history. In the past a person would make this decision.

Knowledge check

3 Write down two advantages and two disadvantages of using social media every day.
4 Identify two advantages of monitoring an individual’s internet searches for an online store.

Environmental issues

Most modern computers consume low levels of electricity but are often left running
permanently. Data centres, which are large facilities that store all sorts of data (like Instagram
accounts, YouTube videos, etc.), account for around 2% of all energy used on the planet – this
is the same as air travel. In addition, energy is of course also used to manufacture a computer
in the first place.

As with all consumer electronics, computers are made from valuable physical resources such
as metals and minerals, some of which are very rare and non-renewable. Computers also
include some pretty toxic material, such as: airborne dioxins, polychlorinated biphenyls (PCBs),
cadmium, chromium, radioactive isotopes and mercury. Their disposal raises environmental
issues and needs to be handled with great care.

Unfortunately, old computer equipment is often shipped off to countries with lower
environmental standards, to reduce the cost of disposal, and they end up in landfill sites. In
some cases, children pick over the waste to extract metals that can be recycled and sold thus
exposing them to significant danger

9781510484160.indb 95 27/05/20 7:21 PM

96

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

Figure 1.6.2 Picking over discarded computer equipment to extract metals

However, there are also a number of positive effects on the environment from computer use,
including:

● A reduction in the use of paper, with on-screen reading replacing the need for physical
copies of documents.

● Laptops and the internet allow people to work from home, reducing the need for travel
which reduces energy consumption and CO2 emissions.

● Computers are essential tools for scientific research into the development of renewable
energy and more energy-efficient devices.

● Smart metering constantly monitors and accurately reports energy and water use.

● Computers are also essential for the management of renewable and low energy-use
technology.

Knowledge check

5 Discuss the environmental impact of computer use.

Privacy issues

Most people agree they have a right to some degree of privacy. However, we often provide lots
of personal information to organisations whenever we access the internet, particularly when
people sign up to services with accounts. Organisations may even share this information with
third parties – which we may have accidentally agreed to when we opened an account.

Personal details and details of activities are often willingly shared on social media. People do
not always realise how much personal information they are sharing and exactly what can be
seen by whom.

9781510484160.indb 96 27/05/20 7:21 PM

97

1.
6.

1
Et

hi
ca

l,
le

ga
l,

cu
ltu

ra
l a

nd
 e

nv
iro

nm
en

ta
l i

m
pa

ct

Other examples of computer technology used to monitor behaviour include:

CCTV cameras around our
towns and cities used to monitor
behaviour

To some this represents an intrusion of privacy. Others feel CCTV provides added security and
safety assurances.

Facial recognition algorithms can be used in conjunction with CCTV footage on private land, e.g.
in shopping centres. There are concerns about how this technology could be used in the future.

Automatic number plate
recognition (ANPR)

ANPR is widely used on UK roads and in car parks to determine who has parked and for
how long.

Electronic tags on those who have
committed a criminal offence

These tags can identify when they are not in the agreed location at the agreed time or, with
GPS, identify their location at any time.

Black boxes installed in cars which
monitor how and when people drive

These can reduce insurance premiums by rewarding safe driving.

Mobile phone signal and location
tracking by apps

Mobile phone signal data is stored by mobile phone companies, which can provide very
accurate location information.

Mobile call records are also stored and can be requested as part of law enforcement activities.

Individuals’ locations can also be tracked by mobile apps or mobile websites without their
knowledge or explicit permission.

Workplace logging systems These can be used to monitor activity at work such as any online activity, phone calls, work
patterns, work quality, social media activity, etc. Unacceptable posts, such as trolling, racist or
sexist comments, can be traced back to the organisation and reflect badly upon them.

Many organisations collect data about individuals and this is often shared with partner
organisations.

● Whenever we check in on social media the location and time is logged.

● Many apps track the location of your mobile phone.

● Whenever we take a picture with our phone’s camera the location and time are logged.
When such images are uploaded to social media sites, the companies are able to access this
information and automatically scan images to try and work out who was in the picture
through facial recognition algorithms.

When browsing the internet, websites can, quite legally, track a lot information about you –
this might include your location, your browser, your IP address, your operating system, what
websites you have visited and what you have searched for. Data is a valuable commodity and
companies use computer algorithms to analyse your behaviour and build up a detailed profile
about you. This profile is often used to target advertising.

There are ways you can limit such tracking but this normally requires changing the default
settings of your browser and websites that you log into.

Knowledge check

6 A distribution warehouse uses computer technology to monitor its workforce. Describe
two ways the distribution centre management might monitor the workforce.

7 Is it reasonable for organisations to demand access to and monitor social network pages
where the content is posted from private computers?

Legislation relevant to computer science

The Data Protection Act 2018

Computers hold vast amounts of data and it is important this data is collected, stored and
processed in ways that protect the individual. The Data Protection Act 2018 sets out rules for

9781510484160.indb 97 27/05/20 7:21 PM

98

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

handling this personal data and is the UK’s implementation of the General Data Protection
Regulation (GDPR). Every organisation, apart from those with specific exemptions, holding
personal data must register with the Information Commissioner’s Office and disclose what
data they are holding, why they are collecting it and how it will be used.

Exemptions are granted to specific sectors including national security, scientific research,
financial services and the Home Office.

There are some key exceptions to these regulations for organisations dealing with national
security, crime detection or taxation.

The Data Protection Act 2018 sets out seven key principles that should be central to processing
personal data:

Lawfulness, fairness and transparency
● There must be valid reasons for collecting and using personal data.

● Nothing must be done with the data in breach of any other laws.

● Personal data can only be used in a way that is fair. This means data must not be processed
in a way that is damaging, unexpected or misleading.

● The person or organisation collecting the data must be open and honest with people from
the start about how they will use their personal data.

Purpose limitation
● The purpose for processing the data must be clear from the start.

● The purpose must be documented and specified in privacy information that is
communicated to individuals.

● Data must not be used for a new purpose unless this is compatible with the original purpose.
If it is not then additional consent must be obtained unless there is a clear obligation or
function set out in law.

Data minimisation
Data being processed must be:

● adequate

● relevant

● limited to what is necessary.

Accuracy
● All reasonable steps must be taken to ensure the personal data held is not incorrect or

misleading.

● Data must be kept up to date.

● If any data is incorrect or misleading it must be corrected or erased as soon as possible.

● Challenges to the accuracy of personal data must be considered.

Storage limitation
● Data must not be kept for longer than necessary.

● How long data is kept for must be justified and specified in a policy statement.

● There must be a periodic review of the data held, and data no longer required should be
erased or anonymised.

● Individuals have a right to have data erased if it is no longer required.

● Data can be kept for longer if it is only kept for public interest archiving, scientific or
historical research, or statistical purposes.

Security
There must be adequate security measures in place to protect the data held.

Tech term

GDPR A Europe-wide
law enforcing an
individual’s rights over
their data.

9781510484160.indb 98 27/05/20 7:21 PM

99

1.
6.

1
Et

hi
ca

l,
le

ga
l,

cu
ltu

ra
l a

nd
 e

nv
iro

nm
en

ta
l i

m
pa

ct

Accountability
The data holder must take responsibility for how the data is used and for compliance with the
other principles.

Computer Misuse Act 1990

Under the provisions of the Computer Misuse Act 1990 it is a criminal offence to make any
unauthorised access to computer material …

● … with intent to commit further offences (for example blackmail)

● … with the intent to modify the computer material (for example distributing viruses).

The first provision refers to unauthorised access (commonly called hacking).

The second provision refers to anything that impairs the performance of a computer system
including the distribution of viruses.

For information on how to minimise these threats see section 1.4.2.

Knowledge check

8 What are the seven principles of the Data Protection Act?
9 What is the purpose of the Computer Misuse Act?

Copyright, Designs and Patents Act 1988 (CDPA)

The CDPA protects the intellectual property of an individual or organisation. Under the act
it is illegal to copy, modify or distribute software or other intellectual property without the
relevant permission. This act also covers video and audio where peer-to-peer streaming has had
a significant impact on the income of the copyright owners. Using the internet to download
free copies of copyright material (e.g. software, films, books, music) without the consent of
the author is illegal since no money or credit will have been passed on to the original creator.

Software licences

Most commercial software will come with a licence agreement specifying how the purchaser
may use the product. In most cases a licence key will be required to access the software to
prevent unauthorised copying and distribution.

Proprietary software
Much of the software we buy is written by organisations trying to make a profit. The source
code is kept securely and versions of the software are distributed as executable programs. The
user is not able to access the source code and cannot modify it. Copyright laws also forbid
this modification. In return for the money paid these organisations fully test the product and
regularly provide upgrades to fix bugs or improve features of the program. If the product has
faults in it then the user can contact the organisation for an upgrade or fix. These products
usually have a significant amount of online support available for them.

Open-source software
Software developed under open standards has its source code freely available so that others can
access it and make changes to it to develop their own version of the product. Open-source
software is often regularly updated by a community of developers. These updated versions
are then made available to anyone for little or no cost. Despite being free, this software is often
of very high quality because of the community of highly skilled developers who regularly test,
fix and improve the product. On the downside there is no one to blame if it goes wrong.

9781510484160.indb 99 27/05/20 7:21 PM

100

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

Open-source software Proprietary software

Access to the source code No access to source code
May be free of charge Almost always some cost involved
Users can modify the software User cannot modify the software
Can be installed on as many computers
as necessary

Extra licences must normally be obtained before
installing on additional computers

No one is responsible for any problems with
the software

Full support from the software developer

Usually only community support Commercial and community support available

Figure 1.6.3 Libre Office is a suite of office programs available for free download

Examples of open-source software include: Libre Office, Mozilla Firefox, the Android operating
system, Linux and the Python programming language.

There are no ‘typical’ users for open-source or proprietary software – many large
organisations such as Amazon rely on open-source software because they have the in-house
expertise to manage it effectively. The choice will be based on the level of expertise balanced
against the need for commercial support.

An individual who relies on a piece of software but has limited expertise in finding and
understanding the community support available for open-source software will find the readily
available support to solve problems with proprietary software essential.

Creative Commons
Creative Commons is an organisation that issues licences that are less restrictive than
proprietary licences. The licences include:

● public domain, which has no restrictions on use for any purpose

● attribution, where the work can be freely reproduced but the original creator must be credited

● attribution non-commercial, where the work can only be used for non-commercial purposes.

This form of licence is often referred to as ‘some rights reserved’ as opposed to the CPDA’s ‘all
rights reserved’.

Knowledge check

10 What is the difference between proprietary and open-source software?
11 Describe Creative Commons.

9781510484160.indb 100 27/05/20 7:21 PM

101

RE
C

A
P

A
N

D
 R

EV
IE

W

1.6.1 Ethical, legal, cultural and
environmental impacts

Ethical and legal issues
Ethics refer to what is right and wrong and how people should
behave. Computer organisations such as BCS have codes of
conduct that prescribe suitable ethical behaviour for its members.
Legal issues are laws drawn up to govern activities and control
computer crime such as:
■ unauthorised access to data and computer systems for the

purpose of theft or damage

■ identity theft
■ software piracy
■ fraud
■ harassment, such as trolling.

Cultural issues
Culture refers to the ideas, behaviour, beliefs and values of a group
of people. Cultural issues relate to how computers have impacted
our lives, including:

■ the widespread use of ‘disposable’ digital devices
■ the ways in which people interact with each other – for instance,

social media
■ changes in the workplace
■ replacing human roles in organisations
■ changing human roles within organisations
■ widespread data collection about individuals
■ access to entertainment and social interaction
■ workforce monitoring.

RECAP AND REVIEW
1.6 ETHICAL, LEGAL, CULTURAL AND
ENVIRONMENTAL IMPACTS OF DIGITAL
TECHNOLOGY

Important words

You will need to know and
understand the following for
the exam:

Ethics
Legal
Culture
Environmental
Licence
Proprietary software
Open-source software

9781510484160.indb 101 27/05/20 7:21 PM

102

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

Environmental issues
The negative environmental impacts of widespread computer use include:
■ large global energy requirements to run computer systems and data centres
■ the use of rare and non-renewable metals and minerals
■ some computer components are made from toxic materials that are a hazard to the environment

and to human health if not disposed of properly.
The positive environmental impacts of widespread computer use include:
■ homeworking reduces the need to travel, which reduces CO2 emissions
■ more on-screen documents means a reduction in the use of paper and other resources
■ computers enable scientific research that leads to more environmentally friendly technologies,

such as electric cars, the design of solar panels, and so on.

Privacy issues
Using computers raises concerns about individual rights to privacy. Ways in which individuals are
monitored include:
■ Companies can monitor exactly what their workforce are doing on their computers.
■ Use of CCTV and facial recognition.
■ Automatic number plate recognition (ANPR).
■ Websites can track a lot information about your internet activities: your location, your browser,

your IP address, your operating system, what websites you have visited and what you have
searched for. This data might be used to provide insights, for example to target advertising.

■ Mobile phone companies are able to track an individual’s location from their mobile phone, even
if they are not using it.

■ Mobile phone call records are also stored and can be accessed by law enforcement agencies if
requested.

■ With the wrong privacy settings, social media activity is available for anyone to see.

Legislation
The Data Protection Act 2018
The Data Protection Act 2018 sets out seven key principles that should be central to processing
personal data:
■ lawfulness, fairness and transparency
■ purpose limitation
■ data minimisation

9781510484160.indb 102 27/05/20 7:21 PM

103

RE
C

A
P

A
N

D
 R

EV
IE

W

■ accuracy
■ storage limitation
■ security
■ accountability.
Exemptions are granted to specific sectors including national security, scientific research,
financial services and the Home Office.

Computer Misuse Act 1990
This act makes it a criminal offence to access or modify computer material and includes hacking
and the distribution of malware.

Copyright Designs and Patents Act 1988
Protects the intellectual property of an individual or organisation making it illegal to copy, modify
or distribute software or other intellectual property such as music and video.

Software licences
Most commercial software will come with a licence agreement.
Proprietary software is written by organisations trying to make a profit.

■ The source code is kept securely and versions of the software are distributed as executable
programs so that the user is not able to access the source code or modify it.

■ The software is copyright protected, making it illegal to modify or distribute it.
■ The software is usually licensed for a fixed number of computer systems.
■ The software is fully tested and supported by the organisation.
Open-source software uses a community of developers.
Software developed under open standards makes the source code available to everyone.
■ It is developed and updated by a community of programmers.
■ It can be installed on as many computers as necessary.
■ Others can modify the code and distribute it.
■ Versions are made available at no or very little cost.
■ It relies upon the community for testing and support; modified versions may not be supported

or fully tested.

9781510484160.indb 103 27/05/20 7:21 PM

104

1.
6

Et
hi

ca
l, l

eg
al

, c
ul

tu
ra

l a
nd

 e
nv

iro
nm

en
ta

l i
m

pa
ct

s o
f d

ig
ita

l t
ec

hn
ol

og
y

Open-source software Proprietary software
Access to the source code No access to source code
May be free of charge Almost always some cost involved
Users can modify the software Users cannot modify the software
Can be installed on as many computers as
necessary

Extra licences must normally be obtained
before installing on additional computers

No one is responsible for any problems with the
software

Full support from the software developer

Usually only community support Commercial and community support available

Creative Commons is an organisation that issues licences allowing a user to modify or distribute
parts of the software under certain conditions. Also known as ‘some rights reserved’.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 104 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

COMPUTATIONAL
THINKING,

ALGORITHMS AND
PROGRAMMING

SECTION 2

9781510484160.indb 105 27/05/20 7:21 PM

106

2.1

ALGORITHMS

2.1
 A

lg
or

ith
m

s

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

2.1.1 Computational
thinking

➤	 Principles of
computational
thinking

2.1.2 Designing, creating
and refining algorithms

➤	 Identify the inputs,
processes and outputs
for a problem

➤	 Structure diagrams

➤	 Create, interpret,
correct, complete and
refine algorithms

➤	 Identify common
errors

➤	 Trace tables

2.1.3 Searching and sorting
algorithms

➤	 Standard sorting
algorithms

➤	 Standard searching
algorithms

2.1.1 Computational thinking

Computers are simply electronic machines that carry out instructions given by human
programmers; although a computer can solve many complex problems, it can only do so if
it is given the instructions to tell it how to solve the problem. Writing these instructions in a
form that is suitable for a computer to carry out can be a challenging task! Computational
thinking involves three key principles to help with this.

Principles of computational thinking
● Decomposition is breaking a problem down into smaller sub-problems. Once each

sub-problem is small and simple enough it can be tackled individually.

● Abstraction is removing or hiding unnecessary details from a problem so that the
important details can be focused on or more easily understood.

● Algorithmic thinking involves deciding on the order that instructions are carried out and
identifying decisions that need to be made by the computer.

For example, if a programmer wishes to create a system to sell T-shirts, this could be a relatively
large and complex problem. Where would they start? By using these tools, the programmer
can begin to work out how to tackle the problem.

Decomposition Abstraction Algorithmic thinking

How can the T-shirt sales
system be split up?

It perhaps involves:
● A login system for users
● A search function to find

particular T-shirts
● A system to allow users to

buy T-shirts.
● A reordering system

What can we focus on and
what can we ignore?

Considering the login system
and search function of our
example:
● The login system could

focus on a customer’s email
address and password but
ignore everything else.

● The search function could
focus on the T-shirt details
(colour, size, material, price,
how many in stock).

What steps need to be taken in
which order?

One example may be:

IF a customer enters a correct
username AND correct
password, show them the
catalogue of T-shirts.

ELSE display an error message,
then redirect back to the login
screen.

Key point

Computational thinking doesn’t immediately give us all of the answers, but it certainly helps to begin
to think in a way that makes a problem easier to solve.

9781510484160.indb 106 27/05/20 7:21 PM

107

2.
1.

2
D

es
ig

ni
ng

, c
re

at
in

g
an

d
re

fin
in

g
al

go
ri

th
m

s

A particularly powerful example of abstraction is Harry Beck’s well-known London
Underground map. The map focuses on the connections between stations and how lines
intersect. It is a useful tool for anyone who wants to plan a journey in London.

However, it also ignores many of the realities of tunnels, distances between stations and
relation to streets passing overhead; these are not important for underground travellers and
would make the map more confusing if included.

Figure 2.1.1 Abstraction – Harry Beck’s London Underground map, 1931

Knowledge check

1 Define the following terms:
(a) decomposition
(b) abstraction
(c) algorithmic thinking.

2 A programmer is creating software to send and receive encrypted messages via email.
Describe how decomposition can be used to allow this problem to be solved.

3 A chess club develops a system to store details about games played. For each game,
the winner’s and loser’s names are stored alongside the date that the game was played.
Explain how abstraction has been used in the development of this system.

2.1.2 Designing, creating and refining
algorithms

An algorithm is a step-by-step sequence of instructions that are used to solve a problem.
Each instruction in an algorithm must be precise enough to be understood independently.
The algorithm must also clearly show the order that each instruction is carried out in and
where decisions are made or sections repeated.

9781510484160.indb 107 27/05/20 7:21 PM

108

2.1
 A

lg
or

ith
m

s

Identify the inputs, processes and outputs
for a problem
An algorithm can be represented by the diagram in Figure 2.1.2.

Input Process Output

Figure 2.1.2 Input–Process–Output

Input refers to data that is given to the algorithm by the user. This may be typed in via the
keyboard, entered with another input device such as a microphone or read in from an external
data file.

Output is the data that is given back to the user by the algorithm. This may be done with a
message on the screen, using another output device such as a printer or written to an external
data file.

Processes are the steps that the algorithm takes in order to solve the problem. This stage
involves using the input given in order to produce the desired output.

Going back to the example of the system to sell T-shirts, what are the inputs, outputs and
processes for the section of the system that allows the user to search for suitable T-shirts?

The inputs include everything that the system requires the user to enter: for example, the
size, colour and style of T-shirts that they require. Another input would be an external file
containing details of all the T-shirts available.

With these inputs, the system will then carry out processes to find T-shirts to match the user’s
search criteria, such as only selecting those in the correct size and colour and excluding any
that are out of stock.

Once this has been completed, a list of matching T-shirts will be produced as an output to
the user.

Input Process Output

Size of T-shirt
required

Colour of T-shirt
required

File of all T-shirts
available

List of T-shirts that
meet customer
requirements

Search through
list

Find matching
T-shirts

Exclude T-shirts
out of stock

Figure 2.1.3 Example of Input–Process–Output

Structure diagrams
A structure diagram is a form of top-down design that helps us to decompose a problem.
At each level, the problem is broken down by asking the question: ‘What is involved in carrying
out that step?’

For example, we can further investigate the T-shirt sales system. As we decided when looking
at decomposition, a successful system would perhaps need to have a login system for users, a
search function, a sales function and a reordering function. We can represent this in a structure
diagram:

9781510484160.indb 108 27/05/20 7:21 PM

109

2.
1.

2
D

es
ig

ni
ng

, c
re

at
in

g
an

d
re

fin
in

g
al

go
ri

th
m

s

T-shirt system

User login Search Sales Reorder

Figure 2.1.4 Two-level structure diagram

However, what is involved in each of these steps? If we further decompose the sales step, we
may decide that we need to have a shopping basket for the user to select the T-shirts to buy.
We may also need a way to pay for the T-shirts and a confirmation email perhaps needs to be
sent. We can add this to our structure diagram at a lower level, beneath sales.

T-shirt system

User login Search Sales

Send email

Reorder

Shopping
basket

Pay

Figure 2.1.5 Three-level structure diagram

We could then decompose each of the other steps in a similar way to help us to decide what is
involved in carrying out that step. We could also decide that we need to understand a little bit
more about what is involved in setting up a shopping basket or paying for the T-shirts, and so
add further levels beneath them; structure diagrams can have as many levels as required until
each step is clearly defined and understood.

Create, interpret, correct, complete and
refine algorithms

Flowcharts

The inputs, processes and outputs can be put together into an algorithm by using a flowchart.
This is a graphical representation of an algorithm and uses symbols to denote each step, with
arrows showing how to move between each step.

A flowchart may use any of the following symbols:

9781510484160.indb 109 27/05/20 7:21 PM

110

2.1
 A

lg
or

ith
m

s

Line
An arrow represents control passing
between the connected shapes.

This shape represents something
being performed or done.

This shape represents a subroutine
call that will relate to separate,
non-linked flowchart.

This shape represents the input or
output of something into or out of
the flowchart.

This shape represents the ‘Start’
and ‘End’ of the process.

This shape represents a decision
(Yes/No or True/False) that results in
two lines representing the different
possible outcomes.

Process

Subroutine

Input/
output

Decision

Terminal

Figure 2.1.6 Flow diagram symbols

All flowcharts begin and end with the terminal shape, indicating the start and end of the
flowchart. Inputs and outputs are represented by a parallelogram, with decisions using
a diamond shape. Decision boxes must have two possible outputs, a True/False or Yes/No
decision having taken place. All other processes are shown as a rectangle.

Where algorithms are decomposed into separate subroutines, a rectangle with two additional
vertical lines is used to show a call to a different subroutine.

The following flowchart shows part of the algorithm for the T-shirt system that deals with
reordering when T-shirt stocks get low.

Start

Enter ItemCode

True Call Reorder
Subroutine

Output ‘Stock
ordered’

False

End

Output ‘Stock not
ordered’

Read Stocklevel,
ReorderLevel

from File

Is StockLevel
≤

ReorderLevel

Figure 2.1.7 Flow diagram for T-shirt reordering system

Tech term

Subroutine A separate
piece of code that can be
called within a program.

9781510484160.indb 110 27/05/20 7:21 PM

111

2.
1.

2
D

es
ig

ni
ng

, c
re

at
in

g
an

d
re

fin
in

g
al

go
ri

th
m

s

Pseudocode

Alternatively, an algorithm may be represented using pseudocode. Pseudocode is a textual,
English-like method of describing an algorithm. It is much less strict than high-level programming
languages, although it may look a little like a program that could be entered directly into a
computer. The same T-shirt reordering system could be represented in pseudocode as follows:

01 INPUT ItemCode

02 READ StockLevel, ReorderLevel From File

03 IF StockLevel <= ReorderLevel THEN

04 Call ReOrder()

05 PRINT "Stock ordered"

06 ELSE

07 PRINT "Stock not reordered"

08 END IF

Trace tables and identifying common errors
When an algorithm has been defined, it needs to be checked for correctness. A trace table
is a tool that can be used to follow each line of an algorithm through, step by step. The trace
table will show the contents of each variable after each line has been carried out and will also
show any output. By manually following through the algorithm in this way, we can see if it
produces the correct result and if not, help us to identify where any errors have occurred.

For example, we can trace through the pseudocode algorithm shown previously to reorder
stock for item 009, for which we currently have 8 in stock and has a reorder level of 3.

Line Item Code Stock Level Reorder Level Output Comments

01: INPUT ItemCode 009 Item code 009 entered by user

02: READ StockLevel,
ReorderLevel From File

009 8 3 Values read in from external file

03: IF StockLevel <=
ReorderLevel THEN

009 8 3 8 is NOT smaller than or equal
to 3, so line 7 executed next

07: PRINT "Stock not
reordered"

009 8 3 ‘Stock not
reordered’

Correct output printed

By tracing this algorithm through using a trace table, we can see that it does work correctly for
an item that has enough items in stock. We would also have to trace through values that were
out of stock and perhaps also values that were just equal to the reorder level to be sure that
this algorithm works perfectly.

Key point

Because pseudocode
is not strictly defined,
many variations would be
acceptable. For example,
the keyword PRINT
could instead be replaced
with OUTPUT, or even
DISPLAY – as long as the
steps to be taken are clear,
that is sufficient.

Key point

A trace table shows the
values of each variable
after each step has been
executed. Although the
item code is only entered
on line 1, it still holds the
same value throughout the
rest of the program and so
its value is repeated in later
lines of the trace table.

9781510484160.indb 111 27/05/20 7:21 PM

112

2.1
 A

lg
or

ith
m

s

Knowledge check

4 The following algorithm has been designed to decide which of two numbers is the
largest. Complete the trace table to check that the algorithm works correctly when the
values 8 and 5 are entered by the user.

01 INPUT NumOne

02 INPUT NumTwo

03 IF NumOne >= NumTwo THEN

04 PRINT NumTwo

05 ELSE

06 PRINT NumOne

07 END IF

Line NumOne NumTwo Output Comments

2.1.3 Sorting and searching algorithms

One of the great things about an algorithm is that it can be reused; once a computer scientist
has written down a clever set of instructions for how to do something, other people can
simply follow those instructions to solve the same problem.

A sorting algorithm is a set of instructions used to put a list of values into order. A searching
algorithm is used to find a value within a list, or to confirm that value is not present in
the list.

Sorting algorithms
Bubble sort

The bubble sort algorithm works by comparing pairs of values. If the two values are in the
wrong order with respect to each other, they are swapped over. This is then repeated for each
further pair of values. When the last pair of values has been compared, the first pass of the
bubble sort algorithm is complete.

The algorithm will repeat until a pass has been completed with no swaps occurring. Once this
happens, the list is guaranteed to be in order.

Worked example

The following list of numbers will be sorted into ascending order using the bubble sort
algorithm.

7 2 9 4 3

Firstly, 7 and 2 are compared as the first two values in the list. These are in the wrong order,
so they are swapped over.

Beyond the spec

The GCSE Computer
Science specification
covers three sorting
algorithms and two
searching algorithms, but
there are many, many
more that each work
in different ways. Why
not investigate how
Quicksort, Shellsort or
even Bogosort work?

9781510484160.indb 112 27/05/20 7:21 PM

113

2.
1.

3
So

rt
in

g
an

d
se

ar
ch

in
g

al
go

ri
th

m
s

Writing the bubble sort algorithm out in pseudocode could be done as follows:
REPEAT until NoSwapsMade

 REPEAT for each pair in list

 IF list[x] > list[x+1] THEN

 #swap values

 temp = list[x]

 list[x] = list[x+1]

 list[x+1] = temp

 END IF

 END LOOP

END LOOP

Insertion sort

The insertion sort algorithm splits the list to be sorted in two parts: a sorted side and an
unsorted side. Initially, the sorted side contains just the first item in a list, with everything else
on the unsorted side.

 7 2 9 4 3

 Sorted Unsorted

Key point

We have covered how
the bubble sort algorithm
works. However, a full
implementation of the
bubble sort in OCR Exam
Reference Language is given
in the Appendix at the
back of the book. In the
exam YOU MAY BE ASKED
ABOUT THIS ALGORITHM
IN OCR EXAM REFERENCE
LANGUAGE – so ensure
you read and understand
the Appendix.

2 7 9 4 3

Now 7 and 9 are compared. These are in the correct order and so no swap is necessary.

2 7 9 4 3

On the next step, 9 and 4 are compared. These are in the wrong order and so are swapped.

2 7 4 9 3

Finally, 9 and 3 are compared, which are in the wrong order and so are swapped.

2 7 4 3 9

The first pass of the bubble sort algorithm has been completed. However, at least one swap
has taken place and so the algorithm is repeated. After this pass, the numbers will be in the
following order, with two swaps having taken place:

2 4 3 7 9

Again, because swaps have taken place, the algorithm must repeat. This time, only one swap
is needed, giving the following list:

2 3 4 7 9

Key point

The list now appears to be in numerical order. However, the algorithm only stops
when a pass is completed without any swaps taking place. This is not yet the case.

The final pass of the algorithm compares each pair of numbers and finds no numbers that
need to be swapped. The algorithm is therefore complete and the values are in order.

The bubble sort algorithm gets its name because numbers ‘bubble’ to the top after every pass.

Beyond the spec

If a list contains just
one value, it can always
be considered to be in
order. This is a helpful
concept for other
sorting algorithms at
A Level.

9781510484160.indb 113 27/05/20 7:21 PM

114

2.1
 A

lg
or

ith
m

s

Each item on the unsorted side is then taken and inserted into the correct place on the sorted
side, one by one. In this example, 2 would next be taken and inserted before the value 7 in the
sorted list.

 2 7 9 4 3

 Sorted Unsorted

This process is repeated for the next item in the unsorted list, with 9 inserted into the sorted
list.

 2 7 9 4 3

 Sorted Unsorted

The penultimate number (4), is then inserted into the sorted list.

 2 4 7 9 3

 Sorted Unsorted

When the final number (3) is then inserted into the sorted list. At this point, all numbers have
been inserted and the list can be said to be in order.

 2 3 4 7 9

 Sorted

Unlike a bubble sort, an insertion sort does not require multiple passes to check that the
values are in order; once each value has been inserted into the sorted list and the unsorted
list is empty, the list as a whole will be in order. Writing the insertion sort algorithm out in
pseudocode could be done as follows:

Split the list into a sorted section (containing the first

item) and unsorted section (containing the rest of the

 values)

 REPEAT for each item in the unsorted section

 Insert each item in turn into the sorted section,

placing it in the correct place.

Merge sort

The merge sort algorithm uses a ‘divide and conquer’ approach to split data up into
individual lists and then merge it back together in order. The way that the lists are merged
back together is key to understanding how this algorithm works.

7 2 9 4

First, in the ‘divide’ stage, the original list is split into two separate sublists – [7 2] and [9 4]. Each
of those sublists are themselves each split into two sublists. Each sublist now only contains one
element.

7 2 9 4

Key point

We have covered how the
insertion sort algorithm
works. However, a full
implementation of the
insertion sort in OCR Exam
Reference Language is given
in the Appendix at the
back of the book. In the
exam YOU MAY BE ASKED
ABOUT THIS ALGORITHM
IN OCR EXAM REFERENCE
LANGUAGE – so ensure
you read and understand
the Appendix.

9781510484160.indb 114 27/05/20 7:21 PM

115

2.
1.

3
So

rt
in

g
an

d
se

ar
ch

in
g

al
go

ri
th

m
s

Then each pair of lists are then merged together in the ‘conquer’ stage. Where there are an
uneven number of lists, the odd list will simply remain unmerged until the next step in the
process.

When two lists are merged together, the first number in each of the lists are compared and
whichever should be first is taken to be first in the new list. This process is repeated until all
numbers have been inserted into the new list.

7 2 9 4

2 7 4 9

Here, 7 and 2 are compared, with 2 being inserted into the new list before 7. Similarly, 4 is
inserted before 9 in the next merged list.

2 7 4 9

2 4 7 9

The merging process is again repeated to merge pairs of lists together. 2 and 4 are compared
to decide which value will be first in the new list, with 2 being inserted. 7 and 4 are then
compared, with 4 being inserted. 7 and 9 are compared, with 7 being inserted before 9 is finally
inserted. It is important to note that each sublist in the merge stage should contain the same
elements as the corresponding sublist in the divide stage – just in a different order.

The list is now in order. Writing the merge sort algorithm out in pseudocode could be done
as follows:

REPEAT until all lists are merged

 REPEAT for each pair of lists

 REPEAT until all numbers in pairs of lists are merged

 Compare the first value in both lists

 Insert larger of two values into new merged list

 Remove value from old list

Comparison of sorting algorithms
All of the above algorithms will result in a sorted list, but they will do it in very different ways.
Bubble sort is generally thought of as a simple but slow algorithm; as the size of the list of values
increases, it slows down significantly because it requires multiple passes over the same data.

An insertion sort can be more efficient, but a merge sort is much more efficient than both of
these for large lists of values. However, a merge sort may not be the best sorting method for
nearly-sorted or small lists.

Knowledge check

5 Explain how a bubble sort would sort the values [6, 9, 2, 5, 8] into order.
6 Show the stages of an insertion sort being used to sort the words [‘Dog’, ‘Cat’, ‘Mouse’,

‘Ant’] into alphabetical order.
7 A merge sort is an example of a divide and conquer algorithm. State what happens

during the divide stage.

Key point

Unlike the other
algorithms, you do not
need to recognise an
implementation of merge
sort in OCR Exam Reference
Language. However you DO
need to understand and be
able to carry out a merge
sort in the exam.

Key point

You will be expected to
know how to perform a
merge sort on a list with
an even or odd number
of elements. With an odd
number of elements there
are two choices of where
to divide lists – you can
choose either but you
must apply your choice
consistently. Each of the
merge stages must resemble
the divide stages, just with
elements in a different
order.

Key point

At any point in the merging
stage of this algorithm, the
merged lists are always in
order. This means that it is
only the first numbers from
each list that need to be
considered when deciding
on how to merge them.

9781510484160.indb 115 27/05/20 7:21 PM

116

2.1
 A

lg
or

ith
m

s

Searching algorithms
A searching algorithm is used to find an item of data in a list, or to confirm that it is not in the
list. The simplest searching algorithm is a linear search.

Linear search
A linear search is carried out by inspecting each item of the list in turn to check if it is the
desired value. If so, we have found the item; if not, the next item in the list must be checked.

If the algorithm gets to the end of the list without finding the item, then it is not in the list.

7 2 9 4 3

To find the value 9 in this list, 7 and 2 would be checked first before finally finding 9. If the
value 8 was to be searched for using this algorithm then every item (7, 2, 9, 4 and 3) would be
checked. Upon checking the last value, we can be sure that the item is not in the list.

A linear search is simple but inefficient. If we have a list of a million values, we have to check all
one million of them before being sure that the value is not in the list. Writing the linear search
algorithm out in pseudocode could be done as follows:

REPEAT until number is found or end of list is reached

 Check one value (from the start)

 IF value matches what is being searched for:

 Output value

 Stop

 ELIF end of list reached:

 Output "not found"

 Stop

 END IF

Move to next value

Binary search
A much more efficient algorithm to find values in a list is a binary search. However, this
algorithm has the pre-requisite that the list must be in order – it is impossible to use a
binary search on an unsorted list.
The middle value in the sorted list is picked. ‘Middle’ means there are equal numbers of values
either side of it. If there are an even number of values then there isn’t an exact middle value –
however, generally the value to the left of the middle is chosen. (Either side can be picked as
long as we are consistent.)
If the middle value is the one we are searching for then the algorithm finishes. However, if not,
we can discard the bottom half of the list if the middle value is smaller than the one we are
searching for, or discard the top half of the list if the middle number is larger than the one we
are searching for. Either way, we always also discard the middle value.
If we get to a situation where the list only has one item and it is not the one that we are
searching for, then the value is not in the list.

Key point

We have covered how the
linear search algorithm
works. However, a full
implementation of the
linear search in OCR Exam
Reference Language is given
in the Appendix at the
back of the book. In the
exam YOU MAY BE ASKED
ABOUT THIS ALGORITHM
IN OCR EXAM REFERENCE
LANGUAGE – so ensure
you read and understand
the Appendix.

Worked example

The list below is in alphabetical order and so can be used in a binary search. We will look for
the value Q in this list.

A C D F H K P Q S T V W Z

9781510484160.indb 116 27/05/20 7:21 PM

117

2.
1.

3
So

rt
in

g
an

d
se

ar
ch

in
g

al
go

ri
th

m
s

Writing the binary search algorithm out in pseudocode could be done as follows:

REPEAT until (value found) or (list is of size 1 and value

is not found)

 Pick the middle value in a list (if odd number of values,

pick left-of-middle value)

 IF value matches what is being searched for:

 Output value

 Stop

 ELIF value searched for > middle value:

 Discard middle value AND bottom half of list

 ELIF value searched for < middle value:

 Discard middle value AND top half of list

 END IF

Comparison of searching algorithms
A linear search and a binary search will both find a value in a list, but will do so in very different
ways. A linear search will work with any list of values, but may be very slow to do as it checks
every value in the list.

A binary search will be much more efficient, but requires the list to be sorted into order. A
binary search halves the size of the list to be searched on every comparison.

Imagine searching for value in a list of one million numbers. In the worst-case scenario, a linear
search will need to compare against each and every one of these million numbers. A binary
search needs only to make 21 comparisons before it has completed its search.

Knowledge check

8 Explain how a linear search would find the value 18 in the list [1, 8, 6, 2, 18, 14, 7].
9 Which value would be the first to be compared in a binary search through

the list [A, B, C, D, E]?
10 How does a linear search determine that a value does not appear in a list?

Key point

We have covered how the
binary search algorithm
works. However, a full
implementation of the
binary search in OCR Exam
Reference Language is given
in the Appendix at the
back of the book. In the
exam YOU MAY BE ASKED
ABOUT THIS ALGORITHM
IN OCR EXAM REFERENCE
LANGUAGE – so ensure
you read and understand
the Appendix.

We first take the middle value (P). This is not the value that we are looking for and is smaller
than Q alphabetically, so we can discard the bottom half of the list, up to and including P.

Q S T V W Z

We now have a list of six values. As there is no middle value, we pick the value to the left of
the middle, which is T. This is the not the value that we are looking for and T is larger than
Q alphabetically, so the top half of the list (including T) can be discarded.

Q S

We now have a list of two values. Again, there is no middle value so we pick the value to
the left of the middle which is Q. This is the value that we are searching for and so the
algorithm stops.

9781510484160.indb 117 27/05/20 7:21 PM

118

2.1
 A

lg
or

ith
m

s

2.1.1 Computational thinking

Principles of computational thinking
Computational thinking is all about structuring solutions to
problems in a way that computers can easily follow.

■ Decomposition breaks a problem into smaller sub-problems
that can each be tackled individually. Each stage can be further
decomposed if needed.

■ Abstraction means focusing on what is important in a problem
and ignoring or hiding the irrelevant details.

■ Algorithmic thinking involves thinking how the problem can be
clearly defined as an algorithm – that is, what needs to be done
and in what order.

For example, if a programmer wishes to create a system to sell
T-shirts, this could be a relatively large and complex problem. By
using these tools, a programmer can begin to work out how to
tackle the problem.

2.1.2 Designing, creating and refining
algorithms

Identify the inputs, processes and
outputs for a problem
Computer systems:
■ accept input from a user (or from sensors or data files)
■ process this data, and then
■ output the result back to the user in some format.
Identifying the inputs into a system and the outputs required
enables us to decide how the two can be mapped; programmers
can write programs to process the inputs in order to provide the
required outputs.

Input Process Output

RECAP AND REVIEW
2.1 ALGORITHMS

Important words

You will need to know and
understand the following for
the exam:

Computational thinking
Decomposition
Abstraction
Algorithmic thinking
Algorithm
Structure diagram
Flowchart
Pseudocode
Trace table
Sorting algorithm – bubble

sort, insertion sort,
merge sort

Searching algorithm – linear
search, binary search

Pre-requisite (for algorithm)

9781510484160.indb 118 27/05/20 7:21 PM

119

RE
C

A
P

A
N

D
 R

EV
IE

W

Structure diagrams
A structure diagram is a graphical method of decomposing a problem, with each layer breaking
down the layer above it into smaller and smaller sub-problems.
The example below shows a partially completed structure diagram for a smartphone. The phone
software has been split up into Apps, Calls and Photos, with the Calls subsection further split up
into Making Calls, Receiving Calls and a Contacts List. Of course, the Apps and Photos sections
could also be broken down and the Calls subsections could even be broken down further.

Smartphone

Apps Calls

Contacts
list

Photos

Make call
Receive

call

Structure diagram of smartphone functions

Flowcharts
A flowchart is a graphical representation of an algorithm. It can be followed from top to bottom,
making decisions as appropriate.
■ Decisions are represented by diamond shapes and must have a True/False outcome.
■ Inputs and outputs are represented by

parallelograms.
■ Processes are represented by

rectangles.
■ Start/Stop instructions are

represented by rounded rectangles.
Each flowchart must begin and end with a
Start and a Stop instruction.
As an example, the algorithm in in the flow
diagram on page 120 will decide whether
a positive number entered is odd or even
using repeated subtraction.

Line
An arrow represents control passing
between the connected shapes.

This shape represents something
being performed or done.

This shape represents a subroutine
call that will relate to separate,
non-linked flowchart.

This shape represents the input or
output of something into or out of
the flowchart.

This shape represents the ‘Start’
and ‘End’ of the process.

This shape represents a decision
(Yes/No or True/False) that results in
two lines representing the different
possible outcomes.

Process

Subroutine

Input/
output

Decision

Terminal

9781510484160.indb 119 27/05/20 7:21 PM

2.1
 A

lg
or

ith
m

s

120

2.1
 A

lg
or

ith
m

s

Start

Enter Number

TRUE

TRUE
Is Number = 0

Is Number = 1

FALSE

FALSE

End

Number = Number − 2

Output ‘Even’

Output ‘Odd’

Flow diagram of odd/even number checking code

Pseudocode
■ Pseudocode is a textual representation of an algorithm.
■ It is very closely related to high-level programming code, although it does not have the precision

in syntax required by languages such as Python or C#.
■ Pseudocode enables programmers to communicate algorithms to other programmers, showing

the steps used without worrying about which language they are using.
The pseudocode algorithm below carries out the same algorithm as the flowchart shown previously
– finding whether a positive number is odd or even through repeated subtraction.

01 INPUT number

02 WHILE number >=1

03 IF number == 1 THEN

04 PRINT "odd"

05 ELIF number == 0

06 PRINT "even"

07 END IF

08 number = number – 2

09 END WHILE

9781510484160.indb 120 27/05/20 7:21 PM

121

RE
C

A
P

A
N

D
 R

EV
IE

W

Trace tables
Trace tables are used to follow an algorithm through from start to finish. At each point, the value
of each variable and any outputs are recorded. A table such as the one shown below is used. More
columns are added if more variables are used.

Line Variable1 Variable2 Variable3 Output Comments

If the program repeats certain lines, this is reflected in the trace table; each row shows one line
that is executed and lines of code can be repeated as many times as required. The completed
trace table below shows the algorithm running to check whether 5 is an odd or even number.

Line Number Output Comments
01: INPUT number 5 Number inputted by user
02: WHILE number >= 1 5 Number is >= 1, continue
03: IF number == 1 5 Number is not equal to 1
05: ELIF number == 0 5 Number is not equal to 0
07: END IF 5 End of IF statement
08: number = number – 2 3 2 subtracted from number
09 END WHILE 3 End of loop, repeat again
02: WHILE number >= 1 3 Number is >= 1, continue
03: IF number == 1 3 Number is not equal to 1
05: EIF number == 0 3 Number is not equal to 0
07: END IF 3 End of IF statement
08: number = number – 2 1 2 subtracted from number
09 END WHILE 1 End of loop, repeat again
02: WHILE number > =1 1 Number is >= 1, continue
03: IF number == 1 1 Number does equal 1
04: PRINT "odd" 1 ‘odd’ ‘odd’ printed
07: END IF 1 End of IF statement
08: number = number – 2 -1 2 subtracted from number
09 END WHILE -1 End of loop, repeat again
02: WHILE number >= 1 -1 Number is NOT >= 1, WHILE loop and

program ends.

9781510484160.indb 121 27/05/20 7:21 PM

2.1
 A

lg
or

ith
m

s

122

2.1
 A

lg
or

ith
m

s

Bubble sort
The bubble sort algorithm uses the following steps:

REPEAT while a swap has taken place (always run at least once)

 REPEAT for each pair of numbers in the list

 Compare pairs of values

 IF values are in the wrong order:

 swap numbers over

 record that a swap has taken place

■ Bubble sort is a relatively simple algorithm to program.
■ However, it is quite inefficient and may take much longer to complete than other sorting

algorithms on very large lists.

Insertion sort
The insertion sort algorithm uses the following steps:

Split the list into a sorted section (containing the first item) and unsorted

section (containing the rest of the values)

 REPEAT for each item in the unsorted section

 Insert each item in turn into the sorted section, placing it in the

correct place.

■ Insertion sort is more efficient than the bubble sort algorithm, but can be relatively tricky to
implement in a high-level language.

■ Moving values around without overwriting other values can be difficult for inexperienced
programmers.

Merge sort
The merge sort is a divide and conquer algorithm. The divide stage uses the following steps:

REPEAT until each list is of size 1

 Divide each list in half

9781510484160.indb 122 27/05/20 7:21 PM

123

RE
C

A
P

A
N

D
 R

EV
IE

W

When all numbers are split up into separate lists, the merge stage can begin. This uses the following
steps:

REPEAT until all lists are merged

 REPEAT for each pair of lists

 REPEAT until all numbers in pairs of lists are merged

 Compare the first value in both lists

 Insert larger of two values into new merged list

 Remove value from old list

If at any stage an odd number of lists are present, the final list can simply be ignored until the
next iteration.
■ The merge sort is much more efficient than both the bubble sort and insertion sort, especially

on large lists.
■ It will sort a large list of random values into order in a quicker time than both of the other

algorithms.

Linear search
A linear search uses the following steps:

REPEAT until number is found or end of list is reached

 Check one value (from the start)

 IF value matches what is being searched for:

 Output value

 Stop

 ELIF end of list reached:

 Output "not found"

 Stop

 END IF

Move to next value

■ The linear search is relatively inefficient, but it works on any list, regardless of whether it is in
any particular order.

■ Every single value in the list needs to be checked before you can be certain that a value is not
present in a list.

9781510484160.indb 123 27/05/20 7:21 PM

2.1
 A

lg
or

ith
m

s

124

2.1
 A

lg
or

ith
m

s

Binary search
A binary search requires the list of values to be in order. It uses the following steps:

REPEAT until (value found) or (list is of size 1 and value is not found)

 Pick the middle value in a list (if odd number of values, pick

left-of-middle value)

 IF value matches what is being searched for:

 Output value

 Stop

 ELIF value searched for > middle value:

 Discard middle value AND bottom half of list

 ELIF value searched for < middle value:

 Discard middle value AND top half of list

 END IF

Binary search is highly efficient. If an ordered list of one million numbers is used, the binary search
could find a number in the list with no more than 21 comparisons. The linear search by contrast
could take up to one million comparisons.
However, the binary search will only work if the list of values is in order. Therefore, it cannot always
be used.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 124 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

125

2.
2.

1
Pr

og
ra

m
m

in
g

fu
nd

am
en

ta
ls

2.2.1 Programming fundamentals

Key point

Paper 2 requires significant knowledge and understanding of programming. It is highly
recommended that you complete as much practical programming practice as possible in a
high-level language such as Python, Visual Basic or C#.

All questions in the examination will be presented in the OCR Reference Language. Full details
of this can be found at the back of the OCR specification. However, your answers can be given in
either this reference language or in a high-level language of your choice.

All examples given in this chapter are written in the OCR Reference Language.

The use of variables, constants, assignments,
operators, inputs and outputs

Variables, constants and assignments

Variables are used in a computer program to store a single piece of data. For example, you
may wish to store someone’s score in a game. As the name suggests, the contents of a variable
may be changed (or varied) during the running of a program.

When a variable is first defined, the programming language allocates a small area of memory
to store this data.

A variable has an identifier, or name. This is the label given to the area of memory. Variable
identifiers can be almost anything, but they must not contain a space, start with a number
or be a reserved keyword (that is, a word that means something else in that programming
language).

Tech terms

Identifier The name of a variable or constant.

Reserved keyword A word in a particular programming language that has some special
purpose and cannot be used for a variable or constant identifier.

Examples of allowed variable names Examples of disallowed variable names

● score
● max_points
● item2

● new score (contains a space)
● 2ndName (starts with number)
● print (reserved keyword)

Most programming languages are case sensitive; this means that score and Score are
treated as different variables.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

2.2.1 Programming
fundamentals

➤	 The use of variables,
constants, operators,
inputs, outputs and
assignments

➤	 The use of sequence,
selection and iteration
to control the flow of a
program

➤	 The common
arithmetic operators

➤	 The common Boolean
operators AND, OR
and NOT

2.2.2 Data types

2.2.3 Additional
programming techniques

➤	 The use of basic string
manipulation

➤	 The use of basic file
handling operations

➤	 The use of records to
store data

➤	 The use of SQL to
search for data

➤	 The use of one-
dimensional and
two-dimensional arrays

➤	 How to use
subprograms (functions
and procedures) to
produce structured code

➤	 Random number
generation

PROGRAMMING
FUNDAMENTALS

2.2

9781510484160.indb 125 27/05/20 7:21 PM

126

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Constants are used in computer programs to store a single piece of data that has a fixed
value and cannot change during the running of the program. A constant also has an identifier
that acts as a label for a memory location that stores the data.

Assignment means to give a value to a variable or constant. This is normally done using the
‘=’ sign. (Some high-level languages may use ‘:=’ or other symbols). The variable or constant
identifier always goes on the left and the value to be assigned goes on the right.

A variable can be assigned a value multiple times, but when a new value is assigned the old
value is overwritten and lost. A constant can only be assigned a value once, usually at the start
of a program.

Worked example

The following program shows a variable and a constant being assigned values, using the
OCR Reference Language. Note how the contents of the variable score is changed, but
the constant maxScore is fixed and cannot change.

const maxScore = 100
score = 20
score = 30
score = score + 10

After this program is run, maxScore has the value 100 and score has the value 40.

Inputs and outputs

It is useful to be able to input data from a user and output data back to the user. The
keywords input and print are used for these purposes in OCR Reference Language. The
high-level language that you are using may have different keywords for the same purpose.

Worked example

The following program in the OCR Reference Language calculates the radius of a circle using
pi and user input.

const pi = 3.14159
radius = input("enter the radius")
print ("the circumference is", 2*pi*radius)

Operators

A computer program uses operators to perform some sort of action; for instance the ‘+’
sign is used to add two numbers together. Operators will be discussed in detail a little later in
the chapter.

Knowledge check

1 What is a variable?
2 What is the difference between a variable and a constant?

Key point

A common mistake is to
describe a constant as a
variable that doesn’t change
– variables and constants
are similar, but they are
not the same. Would you
describe a car as a bike with
four wheels?

9781510484160.indb 126 27/05/20 7:21 PM

127

2.
2.

1
Pr

og
ra

m
m

in
g

fu
nd

am
en

ta
ls

The use of the three basic programming
constructs to control the flow of a program
The building blocks for any computer program can be reduced down to only three constructs:
sequence, selection and iteration.

Sequence

Sequence is the execution of statements one after the other, in order. The program runs from
top to bottom and each instruction completes fully before the next one is executed.

Program A

x = 10

x = x * 3

x = x + 1

print(x)

Program B

x = 10

x = x + 1

print(x)

x = x * 3

Both programs have the same instructions but in a different order. Program A will print out 31
but program B will print out 11. However, in program B the final value of x equals 33 because
there is another line of code after the print(x) statement. The sequence of instructions is
important and changing this can change how the program works.

Selection

Selection is the construct used to make decisions in a program. These decisions are based on
Boolean conditions and the program then takes one of two paths based on this condition.

Code to execute if
condition is False

Code to execute if
condition is True

Condition
False

True

Figure 2.2.1 Selection based on a Boolean condition

The most common way of implementing selection is by using IF statements. The IF keyword
is used to define the condition to be evaluated, with the code to be executed if true indented
between the IF and ENDIF keywords.

Worked example

name = input("enter your name")
if name == "George" then
 print("Hello George")
endif

In this example, the condition that is evaluated is whether the inputted name matches the
value given (George). If it does, the third line is executed. If not, the program skips over this
line entirely.

Key point

A Boolean condition is
a statement that can be
evaluated to be either True
or False. ‘What do I want
for lunch today’ is not a
Boolean condition as the
answer could be one of
many things but ‘Do I want
pizza for lunch?’ would be
a Boolean condition as the
answer could only be True
(yes I want pizza) or False
(no, I do not want pizza).

9781510484160.indb 127 27/05/20 7:21 PM

128

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

To extend this program to do something else if the condition is false, the ELSE keyword can
be used. The section of code indented under the ELSE statement is only executed when the
IF condition is false.

Worked example

name = input("enter your name")
if name == "George" then
 print("Hello George")
else
 print("Hello stranger")
endif

If the entered name is George then only the indented line under the IF statement is
executed, before the program moves on to the endif statement.

If the entered name is not George then only the indented line under the ELSE statement
is executed before the program moves on to the endif statement.

But what if we want to check for multiple conditions, each with their own associated code to
run if true? The ELSEIF keyword allows us to do this.

Worked example

name = input("enter your name")
if name == "George" then
 print("Hello George")
elseif name == "Lorne" then
 print("Great work Lorne")
elseif name == "Kirstie" then
 print("Nice to see you again")
else
 print("Hello stranger")
endif

In this example, each possible condition is evaluated in turn. First, the inputted name is
checked against ‘George’. If this is true, the message on line 3 is printed. If not, the second
possible condition (‘Lorne’) is checked. If not true, the third and final condition (‘Kirstie’) is
checked. If none of these are true, the ‘Hello stranger’ message is printed.

With the above example, the program will always have one path to follow. It is important to
note that the conditions are checked in the sequence given.

Worked example

mark = input("enter mark out of 20")
if mark >5 then
 print("Could do better")
elseif mark >10 then
 print("Average mark")
elseif mark >15 then
 print("Excellent")
endif

9781510484160.indb 128 27/05/20 7:21 PM

129

2.
2.

1
Pr

og
ra

m
m

in
g

fu
nd

am
en

ta
ls

An alternative way of presenting selection is with a SWITCH/CASE statement. Not all
high-level languages have these available (Python does not) but they are logically equivalent to
IF statements where multiple choices for values are given.

Worked example

name = input("enter your name")
switch name:
 case "George":
 print("Hello George")
 case "Lorne":
 print("Great work Lorne")
 default:
 print("Hello stranger")
endswitch

SWITCH/CASE statements are not suitable where ranges of values (e.g. ‘larger than 10’) are
given as the programmer would need to list each possible value rather than give a range.

Iteration (count and condition-controlled loops)

Iteration is the construct used to repeat sections of code. Iteration is commonly called
looping.

Count-controlled iteration uses the FOR and NEXT keywords. It uses a variable to act as
a counter for the loop. By default, the program will assign this variable a starting value and then
automatically increment the variable by one every time the code repeats. When this counter
equals (or exceeds) the final value, the loop stops.

This code and flowchart are logically identical. Both print out the 8 times table from 1 to 10.

Key point

Iteration can be count-
controlled or condition-
controlled. Count-
controlled iteration repeats
a set number of times (e.g.
‘repeat this code 5 times’)
whereas condition-
controlled iteration
repeats based on a Boolean
condition.

Tech term

Increment Add a value
to; ‘increment by one’
adds 1 to the counter
each time the loop
repeats.

What would happen if someone here got a mark of 19 out of 20? Unfortunately, the
message ‘Could do better’ would be displayed as 17 is larger than 5 and so the first
condition is true. The other conditions will not be checked.

The solution to this problem would be to change the sequence of the conditions so that
the highest mark is checked first

mark = input("enter mark out of 20")
if mark >15 then
 print("Excellent")
elseif mark >10 then
 print("Average mark")
elseif mark >5 then
 print("Could do better")
endif

9781510484160.indb 129 27/05/20 7:21 PM

130

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Worked example

for p=1 to 10
 print(p*8)
next p

Both the program code and flowchart will
print out the values 8, 16, 24 and so on, up
to and including the final value 80.

Start

End

print(p*8)

Is
p = 10?

p = 1

p = p + 1

No

Yes

Figure 2.2.2 Flowchart representing this code

The step keyword can also be used with a FOR loop, in order to increment the counter
variable by different values. This can be used to count up in steps, or even count backwards.

Worked example

This code will add 2 to the counter variable every time around the loop, printing out 1, 3, 5
and so on until the variable k exceeds 20. Note that it will never hit exactly 20.

for k=1 to 20 step 2
 print(k)
next k

This code will subtract 1 from the counter variable every time around the loop, printing out
10, 9, 8 and so on until the variable y equals 1.

for y=10 to 1 step -1
 print(y)
next y

Using the FOR loops shown so far, the programmer defines exactly how many times the given
code will repeat.

Condition-controlled iteration instead checks a condition each time around the loop to
decide whether to repeat the code again or continue. For this type of iteration, the programmer
will not know how many times the code will repeat.

Most programming languages provide two types of condition-controlled iteration – WHILE
loops and DO UNTIL loops. These both perform a similar task but differ in when the condition
is checked and whether the condition needs to be True or False to repeat again.

WHILE loop DO UNTIL loop

total = 0
while total < 20
 num = input("enter

number")
 total = total + num
endwhile
print("done!")

total = 0
do
 num = input("enter

number")
 total = total + num
until total >= 20
print("done!")

Key point

A FOR loop will
automatically increment the
value of the counter variable
by 1 each time; there is no
need to do this manually.

9781510484160.indb 130 27/05/20 7:21 PM

131

2.
2.

1
Pr

og
ra

m
m

in
g

fu
nd

am
en

ta
ls

Note that the WHILE loop will repeat while the total is less than 20 whereas the DO UNTIL
loop will repeat until the total is larger than or equal to 20. They are both logically equivalent and
produce exactly the same results but check different conditions at different times in the code.

Key point

A WHILE loop checks the condition before starting the loop whereas a DO UNTIL loop checks
the condition after the loop has completed. In some circumstances, this could mean that the
WHILE loop will never start but the DO UNTIL loop will always execute at least once.

Both types of loop in the example above will run infinitely if the user simply repeats typing in
negative values.

Knowledge check

3 State the three basic program constructs and describe each one.
4 What is the difference between a While loop and a Do loop?

Key point

Note that Python only
provides a WHILE loop –
there is no DO...UNTIL
loop option in Python.

The common arithmetic operators
The arithmetic operators are used to carry out basic mathematical operations on values
in computer programs. The common operators are:

Operator Name Example Comment

+ Addition a = b + c Adds the two values given.
- Subtraction x = y – 1 Subtracts the second value from the first.
* Multiplication score = score * 10 Multiplies the two values together.
/ Division value = num1/num2 Divides the first value by the second.
MOD Modulus r = score MOD 2 Returns the remainder after dividing the first value by the second value.
DIV Quotient q = score DIV 2 Returns the whole number part after dividing the first value by the

second value, ignoring any remainder.
^ Exponent square = num ^ 2 Raises the first value to the power of the second value.

In this case, raises num to the power of 2. (Raising num to the power
of 2 means num * num)

Operator precedence is the same as in GCSE Mathematics, with BIDMAS being
important. Any operators in brackets are applied first, with indices next, then division and
multiplication, then addition and subtraction last.

Worked example

For example, (3+6) + 7 * 2 means that the (3+6) is completed first, with the
multiplication (7*2) completed next and then the results of these added together:

(3+6) + 7 * 2
= 9 + 7 * 2
= 9 + 14
= 23

This gives the answer of 23. If the calculation was (incorrectly) carried out sequentially then
this would give the wrong answer of 32.

Key point

The MOD operator can be
used to decide if a number
is odd or even. If we hold a
value in the variable num ,
then num MOD 2 will
give 0 if the value is an even
number and 1 if the value is
an odd number. It can also
be used in the same way
to decide if a number is an
exact multiple of another
smaller number.

9781510484160.indb 131 27/05/20 7:21 PM

132

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

The comparison operators
The comparison operators all evaluate to a Boolean True or False outcome.

Operator Name Examples Comment

== Equal to 7 == 7 (true)

8 == 2 (false)

Some languages may use a single = sign. Do not confuse this with
assignment!

!= Not equal to 7 != 9 (true)

3 != (1+2) (false)

!= gives the opposite outcome to ==. (Some languages may use <>.)

< Less than 4 < 7 (true)

4 < 4 (false)

This gives a False output if the values are equal.

<= Less than or
equal to

7 <= 7 (true)

6 <= 4 (false)

This gives a True output if the values are equal.

> Greater than 2 > 1 (true)

3 > 5 (false)

This gives a False output if the values are equal.

>= Greater than
or equal to

9 >= 9 (true)

6 >= 9 (false)

This gives a True output if the values are equal.

The common Boolean operators AND, OR
and NOT
If multiple conditions need to be evaluated, the Boolean operators AND and OR can be
used. A condition can also be reversed using the NOT operator. These function in the same
way as the Boolean logic gates with the same names in section 2.4.1.

The AND operator requires both conditions to be True for the overall condition to be True. If
either or both of the conditions are False, the overall condition will be False.

Worked example

username = input("enter your username")
password = input("enter your password")
if username == "admin" and password == "changeme123" then
 print("Correct details. Logged in")
else:
 print("Incorrect details")

endif

In this example, the AND keyword means that both conditions (the username and password
both matching the correct ones) need to be True for the user to be logged in.

The OR operator requires one or the other (or both) of the conditions to be True for the
overall condition to be True. If both of the conditions are False, the overall condition will be
False.

9781510484160.indb 132 27/05/20 7:21 PM

133

2.
2.

1
Pr

og
ra

m
m

in
g

fu
nd

am
en

ta
ls

Worked example

num1 = input("enter a value over 10")
num2 = input("enter another value over 10")
if num1 >10 or num2 >10 then
 print ("Accepted")
else:
 print ("Rejected")

endif

In this example, the OR keyword means that if either of the entries is over ten then the
‘Accepted’ message will be displayed. If both are over ten then the accepted message is still
displayed. The ‘Rejected’ message is only displayed if neither of the two entries are over ten.

Key point

The two conditions given to an AND or OR operator must be full conditions. A very common
mistake is to write code like:

 if num1 or num2 >10 then

This is incorrect; the first condition (num1) has nothing to be compared against and so will not
work as intended. The correct way, as shown in the OR example would be:

 if num1 >10 or num2 >10 then

The NOT operator reverses the True or False outcome from a comparison.

Worked example

num1 = input("enter a number")
num2 = input("enter a number")
if NOT(num1 == num2):
 print("the numbers are not the same")
endif

In this example, the equivalence operator (==) would give a True outcome if the input
values were the same. However, the NOT operator reverses this, so that False is returned if
the numbers are the same and True if they are not the same.

Of course, this is logically the same as using the != operator.

Knowledge check

5 What is the value assigned to the variable x in each of the following?
(a) x = 23 - 4*3
(b) x = (12 - 5)*3
(c) x = 6*2/3
(d) x = 8/(5-1)

(e) x = 19 MOD 5
(f) x = 22 MOD 4*2
(g) x = 28 DIV 6
(h) x = 23 DIV 2*4

6 What will be returned by the following comparisons?
(a) a != b if a = 8 and b = 5
(b) a >= b if a = 9 and b = 5
(c) a > b OR c < d if a = 5, b = 5, c = 3, d = 2
(d) a <= b AND c != d if a = 6, b = 6, c = 2, d = 4

9781510484160.indb 133 27/05/20 7:21 PM

134

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

2.2.2 Data types

The use of data types
We have previously seen that variables and constants are allocated space in memory to store
their data. The type of data to be stored determines how much memory needs to be allocated
to that variable or constant.

There are five main data types that GCSE Computer Scientists need to be aware of.

Integer

Integers are whole numbers, positive or negative, that have no decimal or fractional part.
Integers are used for counting or storing quantities. For example:

score = 25
highScore = 100
numOfAttempts = 0

All variables used in this example are integers.

Real

The real data type is used for numbers, positive or negative, that have (or may have) a decimal or
fractional part. Real numbers are sometimes called floating point numbers. For example:

price = 19.99
fastestTime = 9.983
score = 17.0

All variables used in this example are real numbers.

Boolean

Boolean variables only ever store True or False values. They are often used as flags or to indicate
the result of a condition. For example:

sorted = False
LoggedIn = True

Both variables used in this example are Boolean values.

Character

A character is a single item from the character set used on the computer, such as H, r, 7 or
&. Uppercase and lowercase are different characters and space is also a character.

When assigning a character to a variable, quotation marks are required to indicate that the
value to be assigned is a character. For example:

a = "t"
b = "4"
c = "%"
d = " "

All variables used in this example are characters.

Tech term

Floating point numbers
Another name for real
numbers – the floating
point refers to the
position of the decimal
point, which can be
different (or ‘float’) for
different numbers.

9781510484160.indb 134 27/05/20 7:21 PM

135

2.
2.

2 D
at

a
ty

pe
s

String

A string data type stores a collection of characters, typically used for names, addresses or
other textual information. Note that numbers and symbols can also be characters and so can
be included in a string.

Just like characters, when assigning a string to a variable, quotation marks are required:

a = "the colour blue"
b = "47 times"
c = "95% increase"
d = "p@55w0rd"

All variables used in this example are strings.

Key point

Strings and characters require quotation marks around the values to be assigned. This is to
differentiate them from variables. Compare the following lines of code:

colour = "blue"
colour = blue

The first line assigns the string value of "blue" to the variable colour. However, the second
line treats both colour and blue as variables and assigns the contents of variable blue to the
variable colour. If the variable blue does not exist, this would cause an error in the program.

Casting

Casting means to convert data from one data type to another. To do this, the following
keywords are used:

Keyword Converts to ... Examples Comment

str() String a = str(123)
b = str(True)

Converts any other data type
into a string. Some languages
require this to be able to
concatenate values.

int() Integer c = int("123")
d = int(87.0)

Converts real numbers to
integers by removing the decimal
part and returning the integer
part (it does not round the
number). Strings containing only
numeric values can be cast as
integers.

real() Real e = real("112.9")
f = real(46)

Integers and strings containing
only numeric values can be cast
as real numbers.

Some languages use float() to
cast.

bool() Boolean g = bool("True") Some languages will cast integers
1 and 0 to be True and False.

Tech term

Concatenate Joining
multiple strings together.

9781510484160.indb 135 27/05/20 7:21 PM

136

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Not all data types can be cast as another data type. For example, if a programmer attempted
to cast the string ‘hello’ as an integer value using newval = int("hello"), an error
would be raised. There is no sensible way of deciding what numeric value ‘hello’ should be
converted to.

Figure 2.2.3 Example of an error in Python when casting a string to an integer

Knowledge check

7 State whether the following data are real numbers, integers, characters, Boolean or
strings:
(a) 35
(b) &
(c) 3!=2
(d) twenty
(e) 35.0
(f) 6.63

2.2.3 Additional programming
techniques

The use of basic string manipulation
Just as integers and real numbers can be manipulated using arithmetic operators, strings can
be manipulated using basic string handling keywords.

Keyword Use Examples

.length To count how many characters are
contained in a string.

name="Seth Bottomley"

name.length

gives 14

.substring(x,y) To extract characters from the
middle of a string where x is the
starting point (beginning at 0)
and y is the number of characters
required. This is known as string
slicing.

name.substring(2,5)

gives ‘th Bo’
name.substring(0,3)

gives ‘Set’

.left(x) To extract characters from the left
of a string, where x is the number
of characters required.

name.left(7)

gives ‘Seth Bo’

9781510484160.indb 136 27/05/20 7:21 PM

137

2.
2.

3 A
dd

iti
on

al
 p

ro
gr

am
m

in
g

te
ch

ni
qu

es

Keyword Use Examples

.right(x) To extract characters from the
right of a string, where x is the
number
of characters required.

name.right(5)

gives ‘omley’

.upper To convert a string to
UPPERCASE.

name.upper

gives ‘SETH BOTTOMLEY’

.lower To convert a string to lowercase. name.lower

gives ‘seth bottomley’

ASC() To find the ASCII value of a
character.

ASC("D")

gives 68

CHR() To find the character that relates
to the ASCII value given.

CHR(68)

gives ‘D’

String slicing

String slicing is the term used to refer to extracting characters from a string. In the OCR
Reference Language, the substring() command can be used for this, although left()
and right() can also be used if the characters to be extracted are at the start or end of
the string.

Concatenation

Concatenation of strings means to join multiple strings together. This is done using the
+ operator. When strings are concatenated, they are joined together in the order given.

Worked example

texta = "this is a message"
textb = "great string"
new = "GCSE " + texta.substring(5,2) +" " + textb.left(5)+ "
print(new)

The above code would join together extracts from the two strings to print out ‘GCSE is
great’.

Note that some languages such as Python also allow programmers to treat a string as an
array of characters and extract individual characters this way. This would be an acceptable
alternative in examination questions.

Knowledge check

8 If text = "Computing is fun" what is returned by:
(a) text.len
(b) text.left(2)
(c) text.right(8)
(d) What command returns the string ‘fun’?

Key point

The + operator is
‘overloaded’, which means
that it does different
things depending on
what data is given to it.
Compare the result of
2+7 (9) with the result of
"hello"+"world"
(helloworld). The +
operator concatenates
strings but also adds
numeric values.

9781510484160.indb 137 27/05/20 7:21 PM

138

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

The use of basic file handing operations
Variables and arrays are temporary in their nature. When the program ends, all values are
cleared and not remembered when the program is run again. However, text files can be used
to permanently store data.

Opening and closing

Before a text file can be used, it must be opened. The OCR Reference Language uses the
open() keyword to do this, with the filename passed in as a parameter in brackets. This is
assigned to a variable with a specified identifier, for example:

 names = open("classnames.txt")

where the text file classnames.txt has been opened and assigned to the variable called
names.

Once the file has been used, it must be closed to ensure that all data is consistent. The
.close() keyword is used in OCR Reference Language to do this.

Read

To read a line of text from an open text file, the .readLine() keyword is used. This will
return the next line in the file. If the .readLine() keyword is used multiple times, it will
return the next line each time.

The .endOfFile() keyword returns a Boolean True or False value to indicate whether the
end of the file has been reached. This can commonly be used with a WHILE or DO UNTIL
loop to keep on reading lines until the end of the file is reached.

Write

To write a line of text to an open file, the .writeLine(x) keyword is used, where x is the
string to be written to the text file. The line of text will always be written to the bottom of the
text file, underneath any other lines of text that are already present.

Worked example

colourFile = open("colours.txt")
while NOT colourFile.endOfFile()
 data = colourFile.readLine()
 print(data)
endwhile
colourFile.close()

In the example above, the code prints out all of the data contained in the "colours.
txt" file. It:

➤ opens the text file "colours.txt" using the identifier colourFile
➤ sets up a WHILE loop that runs until the end of the file is reached

➤ reads one line of data from colourFile into a variable called data

➤ prints out the contents of the variable data

➤ this loop repeats for each line in the text file, and prints out the contents of
"colours.txt" one by one

➤ once the end of the file is reached the loop stops

➤ colourFile is closed.

9781510484160.indb 138 27/05/20 7:21 PM

139

2.
2.

3 A
dd

iti
on

al
 p

ro
gr

am
m

in
g

te
ch

ni
qu

es

Worked example

colourFile = open("colours.txt")
do
 data = input("enter a colour")
 if data != "end" then
 colourFile.writeline(data)
 endif
until data == "end"
colourFile.close()

The example above writes colours to a text file until ‘end’ is entered. It:

➤ opens the text file "colours.txt" using the identifier colourFile
➤ sets up a DO UNTIL loop

➤ asks the user to input a colour and stores this in the variable data

➤ using an IF THEN statement, checks that the input is not the word ‘end’ and if not
writes the contents of the variable data to the end of colourFile – this prevents
the word ‘end’ from being written to colourFile

➤ the DO UNTIL loop checks if the input was the word ‘end’ and repeats the loop if not
but ends the loop if it was

➤ colourFile is closed. The file "colours.txt" now contains the extra data that
the user inputted.

The use of records to store data
A record is a data structure that allows multiple data items to be stored, using field names
to identify each item of data. To create a record, we must first define the field names that will
make up each record. For a record about a student, these might be:

● FirstName

● Surname

● YearGroup

● Email

We can then store data under these field names in a database management system using a table.

Table 2.2.1 Table called ‘Student’ showing three records

FirstName Surname YearGroup Email
Bradley Jenkins 9 bjenkins@notreal.co.uk
Jamie Cable 10 jcable@notreal.co.uk
Charlotte Pegg 9 cpegg@notreal.co.uk

The use of SQL to search for data
Structured Query Language (SQL) is a language used to access data stored in a database.
There are three main keywords to be aware of:

● SELECT identifies the fields to return from the database

● FROM identifies which table(s) the data will be returned from

● WHERE allows the programmer to include criteria, with only matching records being returned.

SELECT and FROM are compulsory to use in an SQL query; the WHERE clause is optional; if it
is not included then all records from the table specified will be returned.

Key point

Some special symbols called
wildcards can be used in
searches. The * wildcard can
be used with a SELECT
keyword as a shortcut to
indicate that all fields from
the table will be returned.

9781510484160.indb 139 27/05/20 7:21 PM

mailto:BradleyJenkins9bjenkins@notreal.co.uk
mailto:JamieCable10jcable@notreal.co.uk
mailto:CharlottePegg9cpegg@notreal.co.uk

140

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Worked example

Using the Student table from the previous section as a guide, the FirstName and Surname
fields for all students can be shown by using this SQL query:

SELECT FirstName, Surname
FROM Student

FirstName Surname
Bradley Jenkins
Jamie Cable
Charlotte Pegg

To show all fields, but only those students in Year 10, a WHERE clause would be used
SELECT *
FROM Student
WHERE YearGroup = 10

FirstName Surname YearGroup Email
Jamie Cable 10 jcable@notreal.co.uk

To show the FirstName, YearGroup and Email for all students whose first name was either
Jamie or Charlotte, this SQL query would be used :

SELECT FirstName, YearGroup, Email
FROM Student
WHERE FirstName = "Jamie" or FirstName = "Charlotte"

FirstName YearGroup Email
Jamie 10 jcable@notreal.co.uk
Charlotte 9 cpegg@notreal.co.uk

Knowledge check

 9 A junior football club stores details for their members including their surname,
telephone number, membership fee, membership paid or not and number of
goals scored.

 Identify the most appropriate field type for each of these fields.
10 The table Address_book contains the following data:

First_name Last_Name Telephone Email

Bill Wilson 02223334445 bw@notreal.cod

Graham Mills 02232232232 gm@notexist.cot

Harry Smith 01223123123 harry@home.vid

Sheila Jones 01212121212 SJ@home.vid

(a) What is returned by the following query? SELECT First_name,
Telephone FROM Address_book

(b) Write a query to return the First_name and Email for the Last-name ‘Mills’.
(c) Write a query to return all the information for the entry with the Email

‘SJ@home.vid’.

9781510484160.indb 140 27/05/20 7:21 PM

mailto:JamieCable10jcable@notreal.co.uk
mailto:Jamie10jcable@notreal.co.uk
mailto:Charlotte9cpegg@notreal.co.uk

141

2.
2.

3 A
dd

iti
on

al
 p

ro
gr

am
m

in
g

te
ch

ni
qu

es

The use of arrays (or equivalent), including
1D and 2D arrays
We have seen that a variable can be used to store a single item of data in a computer program.
An array allows a programmer to store multiple items of data under a single identifier. This
would be useful, for example, in a computer game to store the names of multiple players.

Arrays have a fixed number of items that they can store; this number is defined when the array
is created. Each item in the array must also be the same data type.

One-dimensional arrays

A one-dimensional array is accessed via a single numeric index value.

Array index 0 1 2 3
Data “Fletcher” “Imogen” “Tia” “Muhammad”

The above 1D array can be created using the following code in OCR Reference Language:

array students[4]
students[0] = "Fletcher"
students[1] = "Imogen"
students[2] = "Tia"
students[3] = "Muhammad"

Note that the array index starts at 0, so an array of ten values would have indexes from 0 to 9.

Key point

Python does not have simple arrays by default. Instead, lists can be used which are similar in
operation but have two key differences. First, lists can contain a mix of different data types. Second,
lists are not of a fixed size and can be added to or reduced in size during the running of the program.

Arrays are commonly used with FOR loops to access each item in the array in turn. The code
below uses a FOR loop to add up each element in an array of scores, where the array has
eight items.

Array index 0 1 2 3 4 5 6 7
Data 5 7 0 10 8 3 7 3

total = 0
for i = 0 to 7
 total = total + scores[i]
next i
print(total)

This code would return a total of 43.

Two-dimensional arrays

A two-dimensional array is accessed using two index numbers. It can be represented using a
table as shown in Table 2.2.2

Table 2.2.2 2D array showing scores for a game

0 1 2
0 19 123 85
1 27 99 75
2 84 35 20
3 102 33 7

Tech term

Nested loop One loop
that sits within another
loop.

Tech term

Index value A number
that corresponds to the
location of an item of
data in an array.

9781510484160.indb 141 27/05/20 7:21 PM

142

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

To access each value, two index numbers are required separated by a comma, for example
scores[0,2].

Worked example

To populate this 2D array, the following nested FOR loops could be used.

array scores[3,4]
for x = 0 to 2
 for y = 0 to 3
 scores[x,y] = input("Enter a score")
 next y
next x

This code populates the [0,0] entry first, then the [0,1] entry, then [0,2], then [0,3]; then [1,0],
[1,1], [1,2] and so on up until the final [2,3] entry.

Knowledge check

11 The contents of the array fruit is displayed below, where fruit[1,3] is ‘Apple’.

0 1 2 3 4
0 Pear Grape Banana Damson Orange
1 Raspberry Blueberry Blackcurrant Apple Grapefruit
2 Strawberry Greengage Lemon Lime Kiwi

(a) What is the value of fruit[1,1]?

(b) What is the value of fruit[2,3]?

(c) What is the array element for ‘Blackcurrant’?

How to use subprograms to produce
structured code
When programs grow in size, they can become hard to manage. Ideally, larger programs should
be broken down into subprograms (sometimes called subroutines).

The advantages of using subprograms include:

● They reduce the overall size of the program as code does not need to be repeated in
multiple places.

● They make the code much easier to maintain as it is easier to read and understand the
purpose of each subprogram.

● They reduce development and testing time as code is much easier to write and debug.

● They allow reuse of code between programs, especially where pre-written and pre-tested
subprograms can be used.

When a subprogram is called, control passes from the main program to the subprogram. Once
the subprogram has completed, control is passed back to the main program.

Key point

There is no one ‘correct’
way to represent a 2D
array; it can be thought of
as being accessed via [row,
column] or [column, row].
A table is simply an abstract
representation of how the
data is stored in a 2D array.
Any exam question using
a table for this will tell you
how to access the array.

9781510484160.indb 142 27/05/20 7:21 PM

143

2.
2.

3 A
dd

iti
on

al
 p

ro
gr

am
m

in
g

te
ch

ni
qu

es

Main program
running

Subprogram called

Subprogram runs

Main program
continues

Figure 2.2.4 A subprogram being called from a main program

Subprograms can be divided into two types, procedures and functions.

Procedures

A procedure is a section of code that is defined outside the main body of the program. A
procedure is given its own identifier, which is then used to call the procedure as many times
as required.

Worked example

//procedure definition
procedure timestableuser()
 num = input("enter times table")
 for x = 1 to 10
 print(num*x)
 next x
endprocedure

//call the procedure to run
timestableuser()

Here, a procedure to produce a printed times table is defined once and given the identifier
timestableuser. Once defined, the procedure can be called from within a program, as
many times as required.

Note the use of brackets after the procedure’s identifier. In the last example, these brackets
were empty but they can be used to pass parameters into the procedure.

A parameter is a value that the procedure will use. We can rewrite the previous procedure
to use parameters to control which times table will be produced and how many numbers to
print out.

9781510484160.indb 143 27/05/20 7:21 PM

144

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Worked example

//procedure definition
procedure timestable(tt, nums)
 for x = 1 to nums
 print(tt*x)
 next x
endprocedure

//call the procedure to run
timestable(8, 10)
timestable(9, 12)

Another procedure is defined, called timestable. This time it expects two parameters
to be passed into the procedure in the form of variables tt and nums. When the
procedure is called, the parameter values also have to be defined.

The first time the procedure is called, the values 8 and 10 are passed into the procedure.
The second time the procedure is called, the values 9 and 12 are passed into the procedure.
The first call will print out the 8 times table from 8 × 1 to 8 × 10 whereas the second call
will print out the 9 times table from 9 × 1 to 9 × 12.

Using this procedure is far more flexible and efficient than writing new code for each
different times table.

Functions

A function is a type of subprogram that differs from a procedure in one key way: it returns
a value back to the main program when it returns control. This value can then be stored,
printed or otherwise used in the main program.

In every other way, a function is identical to a procedure; it is defined outside the main body
of the program and can be called as many times as required.

To define a function in the OCR Reference Language, the function keyword is used.

Worked example

//function definition
function circle_area(radius)
 const pi = 3.14159
 area = pi*(radius^2)
 return area
endfunction

//calls to the function
new = circle_area(10)
print(new)

In this example a new function is defined called circle_area(radius), which
calculates the area of a circle. It requires a value for the circle’s radius to be passed to it
as a parameter.

Note that in the function definition the return keyword is used to define what is passed
back to the main program – in this case the value of the circle’s area. When the function
is called, this value is then stored in a variable new. Note that the programmer could have
chosen to do something else with the returned value for the area, such as print it out or use
in a further calculation. This choice is made when the function is called.

Key point

Procedures and functions
are both examples of
subprograms. Both can
accept parameters passed
into them. Functions return
a value to the main program
whereas a procedure does
not.

9781510484160.indb 144 27/05/20 7:21 PM

145

2.
2.

3 A
dd

iti
on

al
 p

ro
gr

am
m

in
g

te
ch

ni
qu

es

Knowledge check

12 Describe one difference between a function and a procedure.
13 Describe two benefits of using subprograms.

Random number generation
Random numbers can be generated by a programming language. For example, a game may
require that a random score between one and ten is given when a certain action is completed.

A very common built-in function that you may have used in a high-level language is the
random() function. Typically, an upper and lower limit to the number are passed in as
parameters and a random value between these two limits is returned by the function.

In the OCR Reference Language, the random(..,..) function allows us to do this.
Programmers can pass in the lowest and highest number required as arguments (in brackets):

x = random(1,5) //chooses a random integer between 1 and 5

y = random(20,30) //chooses a random integer between 20 and 30

Worked example

r = random(1, 10)
print(random(20, 50))

Here, the built-in random function is used in two different ways. The first use shows how
the returned value can be assigned to a variable, to be used later on in the program. The
second shows another random value being printed for the user. Note how this choice is
made by the programmer after the value has been returned; it is not decided within the
function itself.

9781510484160.indb 145 27/05/20 7:21 PM

146

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

2.2.1 Programming fundamentals

The use of variables, constants,
assignments, inputs and outputs
A variable stores a single piece of data. It is a label for an allocated
area of memory. The value of a variable can be changed during the
execution of the program.
A constant is also a label for an allocated area of memory. Unlike a
variable, the value of a constant cannot change during the execution
of the program.

Variables and constant are given an identifier (or name). Their
identifiers can be almost anything but must:
■ not contain spaces
■ not start with a number
■ not be particular words reserved for use in the programming

language.
Variables and constants are assigned values using the = operator.
(Your chosen language might use a different symbol.)
Variables can be assigned new values throughout a program, which
overwrites the previous value.
Constants can only be assigned a value once.
Variable examples:

 x = 7

 name = "Wilf"

Constant examples:
 const maxScore = 100
 const minimum = 0
Data can be input from the user and output back to the user. For
example:

name = input("Enter your name")

print(name)

print is the output command used in the OCR Reference Language
but this may be different in your chosen language.

RECAP AND REVIEW
2.2 PROGRAMMING FUNDAMENTALS

Important words

You will need to know and
understand the following
for the exam:

Variables
Constants
Assignment
Input
Output
Sequence
Selection
Boolean conditions
Iteration
Looping
Count-controlled

iteration/loops
Condition-controlled

iteration/loops
Arithmetic operators
Modulus
Quotient
Exponent
Operator precedence
Comparison operators
Boolean operators
Integers
Real numbers
Character
String
Casting
Slicing
Concatenation
Opening (files)
Reading (files)
Closing (files)
Writing (files)
Record
Field names
SQL commands: SELECT,

FROM, WHERE
Array
Subprograms
Procedures
Functions
Parameters
Random numbers

9781510484160.indb 146 27/05/20 7:21 PM

147

RE
C

A
P

A
N

D
 R

EV
IE

W

The use of the three basic programming constructs to
control the flow of a program
Sequence is the execution of statements one after the other, in order. A program runs from top
to bottom and each instruction completes fully before the next one is executed.
Selection is the construct used to make decisions in a program. These decisions are based
on Boolean conditions and the program then takes one of two paths based on this condition.
Selection can be implemented using IF statements:

if x > 100 then

 print("Number is over 100")

 endif

Selection can also be implemented using SWITCH/CASE statements:
switch colour:

 case "blue":

 print("blue is the colour of the sky")

 case "green":

 print("green is the colour of the grass")

 default:

 print("you picked a different colour")

endswitch

Note that not every language has SWITCH/CASE statements – for instance Python does not.
Iteration is the construct used to repeat sections of code. Iteration is commonly called looping.
Count-controlled iteration repeats code a defined number of times. FOR loops can be used to
implement count-controlled iteration. A step can also be defined:

for y=1 to 100 step 5

 print y

 next y

Condition-controlled iteration checks a condition each time around the loop and decides whether
to repeat the code again or continue. WHILE loops and DO UNTIL loops can be used to implement
condition-controlled iteration.

total = 0

while total < 100:

 x = input("enter a value")

 total = total + x

endwhile

9781510484160.indb 147 27/05/20 7:21 PM

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

148

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

Operators
A computer program uses operators to perform some sort of action.
Arithmetic operators can be used to carry out basic mathematical operations on numeric values.

Operator Name Example
+ Addition 3 + 5 = 8

- Subtraction 6 – 2 = 4

* Multiplication 4 * 3 = 12

/ Division 6 / 3 = 2

MOD Modulus – returns the
remainder after division

r = 5 MOD 2

would give the result that r = 1
DIV Quotient – returns the

whole number after division
q = 5 DIV 2

would give the result that q = 2
^ Exponent x = 2 ^ 4

Gives the result that x = 16 (because 2x2x2x2=16)

Comparison operators are used to evaluate expressions to a Boolean True or False outcome.
Operator Name
== Equal to
!= Not equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

Boolean operators allow multiple conditions to be evaluated.
The AND operator requires both conditions to be True for the overall condition to be True.
The OR operator requires one or the other (or both) of the conditions to be True for the overall
condition to be True.
The NOT operator reverses the True or False outcome from a comparison.

2.2.2 Data types

The use of data types
Integers are whole numbers, positive or negative, that have no decimal or fractional part. For
example, 99 is an integer.
The real number data type is used for numbers, positive or negative, that have (or may have) a
decimal or fractional part. For example, 18.779 is a real number.

9781510484160.indb 148 27/05/20 7:21 PM

149

RE
C

A
P

A
N

D
 R

EV
IE

W

Boolean variables only ever store True or False values. For example, True is a Boolean value.
A character is a single item from the character set used on the computer. For example, ‘@’ is a
character. When assigning a character to a variable, quotation marks are required.

A string data type stores a collection of characters. For example, ‘Hello world’ is a string. When
assigning a string to a variable, quotation marks are required.

Casting is the conversion of one data type to another. Not all data can be cast to another
data type.

OCR Reference Language keyword Converts to ...
str() String
int() Integer
real() Real
bool() Boolean

2.2.3 Additional programming techniques

Basic string manipulation
String manipulation tools allow strings to be sliced, concatenated or modified.
■ String slicing means to extract individual characters from strings.
■ String concatenation means to join strings together.

Keyword Use
.length To count how many characters are contained in a string.
.substring(x,y) To extract characters from the middle of a string where x is the starting

point (beginning at 0) and y is the number of characters required.
.left(x) To extract characters from the left of a string, where x is the number of

characters required.
.right(x) To extract characters from the right of a string, where x is the number of

characters required.
.upper To convert a string to UPPERCASE.
.lower To convert a string to lowercase.
ASC() To find the ASCII value of a character.
CHR() To find the character that relates to the ASCII value given.

Basic file handing operations
Files can be written to and read from by a program.
They must be opened before they can be used with the keyword open().
The contents of the file can be read line by line using the keyword .readLine().
To write a line at the end of the file we use the keyword .writeLine().

9781510484160.indb 149 27/05/20 7:21 PM

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

150

2.
2

Pr
og

ra
m

m
in

g
fu

nd
am

en
ta

ls

The .endOfFile() keyword returns a Boolean value for whether the file is at the end or not.
Files must be closed at the end of their use with the keyword .close().

Keyword Use
open() contents = open("textfile.txt")

Opens textfile.txt into the variable contents
.readLine() data = contents.readLine()

Reads a single line of data from contents
.writeLine() contents.writeLine("Add a new line of data")

Writes a single line of data at the end of the file
.endOfFile() contents.endOfFile()

Returns TRUE if the last line of contents has been reached and FALSE if not.
.close() contents.close()

Closes the file

The use of records to store data
A record is a data structure that allows multiple data items to be stored, using field names to
identify each item of data.
Data is organised using field names and stored in a table.

The use of SQL to search for data
SQL (Structured Query Language) is a language used to access data stored in a database.
■ SELECT identifies the fields to return from the database
■ FROM identifies which table(s) the data will be returned from
■ WHERE is an optional command that allows the programmer to include criteria, with only

matching records being returned.
For example:

 SELECT names, points, DOB

 FROM games

 WHERE points > 100

The use of 1D and 2D arrays
A one-dimensional array allows a programmer to store multiple items of data under a single
identifier.

array words[5]

words[0] = "hello"

words[1] = "world"

Array index 0 1 2 3 4
Data “hello” “world”

9781510484160.indb 150 27/05/20 7:21 PM

151

RE
C

A
P

A
N

D
 R

EV
IE

W

A two-dimensional array allows a programmer to store multiple items of data using two identifiers.
array words[5,4]

words[0,4] = "hello"

words[3,2] = "world"

0 1 2 3 4
0 “hello”
1
2
3 “world”

Any exam question using a table for this will tell you whether you access the array as [row, column]
or [column, row].

How to use subprograms to produce structured code
Subprograms allow programs to be split up into multiple sections. This makes the code easier to
read and maintain, reduces the size of the code and promotes the reuse of code without copying
and pasting.
Procedures are a type of subprogram that do not return a value to the main program.
Functions are a type of subprogram that return a single value to the main program.
Both procedures and functions need to be defined:

procedure add(x, y) // definition of procedure called add

 total = x + y

 print(total)

endprocedure

function addition(x, y) // definition of function called addition

 total = x + y

 return total

endfunction

The return keyword must always be used when defining a function, in order to state what value
the function will send back to the main program.
Once defined, procedures and functions can be called at any point in the main program and
parameters passed into them in brackets:

call add(1,2) // call the procedure add using the numbers 1 and 2.

call addition(2,3) // call the function addition using the numbers 2 and 3

Random number generation
Random numbers can be generated using the random() keyword.

print(random(1, 100)) // prints a random integer between 1 and 100

9781510484160.indb 151 27/05/20 7:21 PM

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

152

1.3 COMPUTER NETWORKS,
CONNECTIONS AND
PROTOCOLS

It is not enough for a programmer to just ensure that their programs work correctly for them;
what happens when the software is used by a different user, with different input data or on
different hardware? A robust program will handle all of these changes and still function
correctly.

In order to be as robust as possible, it is important that programs incorporate defensive
design and also undergo thorough testing before being released.

All examples given in this chapter are written in the OCR Reference Language.

2.3.1 Defensive design

Defensive design considerations
Defensive design involves thinking about problems that could potentially occur and nullifying
them before they happen. For example, if a user is asked for a number between one and ten,
how do we know that they will actually enter a number at all, let alone one of the correct
magnitude? A well-designed program that applies defensive design will check both of these
things.

Anticipating misuse

Misuse of a program could be deliberate (users looking for ways to hack into a system by
making it crash) or accidental (users not understanding what they are supposed to enter or
accidentally entering the wrong data). However, we must deal with these as if they were the
same.

When creating a program, think about the actions, either deliberate or accidental, that would
cause the program to fail. By anticipating misuse in this way, we can then work out how
to deal with the issues and produce a robust program.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

2.3.1 Defensive design

➤	 Defensive design
considerations

➤	 Input validation

➤	 Maintainability

2.3.2 Testing

➤	 The purpose of testing

➤	 Types of testing

➤	 Identifying syntax and
logic errors

➤	 Selecting and using
suitable test data

➤	 Refining algorithms

2.3
PRODUCING ROBUST
PROGRAMS

Tech term

Robust program A
program that functions
correctly under less than
ideal conditions.

Worked example

The following is a program for a banking application that allows the user to withdraw
money from their account.

balance = 100
withdraw = input("enter amount to withdraw in £")
balance = balance – withdraw
print ("your balance is now", balance)

We could check this program works if the balance is £100 by withdrawing £20 – we would
expect to see a balance of £80 remaining.

9781510484160.indb 152 27/05/20 7:21 PM

153

2.
3.

1
D

ef
en

si
ve

 d
es

ig
n

Authentication

Some computer systems, such as online shopping websites, are available to all users on an
anonymous basis. Users can search for products without giving any personal details. However,
in order to do any more than this, users are required to be authenticated. Some computer
systems require authentication to use the system at all.

Authentication is the process of establishing a user’s identity. How can the computer system
be sure that the user is who they say they are? Users can be authenticated in many ways:

● Usernames and passwords are perhaps the most common method. A username and a
secret password are chosen by the user and when these are entered a computer system
can check that they match those of a known user.

● Possession of an electronic key, device or account is used as authentication since
only one person will have access to that particular device. Some computer systems will
check that an email address or phone number belongs to you by sending an email or text
containing a secret code.

● Biometrics is the use of measurements relating to biological traits. If your school uses
fingerprint scanners to identify you, you will have experience of this. Banks are increasingly
using voice recognition to authenticate users who use telephone services.

Two-factor authentication is where two of the above are checked simultaneously.
For example, you may log in to a system with a username and password (1st method of
authentication) and are immediately then sent a text message or email to respond to (2nd
method of authentication).

Knowledge check

1 What is meant by the term ‘defensive design’?
2 Explain two defensive design considerations.
3 What is meant by ‘two-factor authentication’?

However, if we anticipate misuse, some potential issues become clear:

➤ Should we be allowed to withdraw more than our balance?
➤ What if we withdraw a negative balance? This will effectively add money to our account.

➤ What if the user enters an amount in words, such as ‘TEN POUNDS’? Will this cause the
program to crash?

➤ What if the user enters numbers with the preceding ‘£’ sign? Will this cause the program
to crash?

All of these issues would need to be dealt with by the programmer before the program
could be said to be robust.

Beyond the spec

Passwords should never
be stored by computer
systems as this would
be very dangerous – if
a hacker was able to get
access to the database
then they would know
everyone’s passwords.
Instead, a hash of each
password is stored;
this is a mathematical
one-way process that
returns a very long
unique number for each
password. When a user
enters a password, this is
hashed and compared
with the hash stored in
the database; if the two
match, the user can be
authenticated without
ever having their
password stored.

Key point

Authentication can be
typically reduced to three
areas: what you know
(passwords), what you have
(devices and keys) and what
you are (biometrics).

9781510484160.indb 153 27/05/20 7:21 PM

154

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

Input validation
A major source of potential problems in a computer program is invalid data entered by the
user. Input validation is the process of checking input data against rules defined by the
programmer to ensure that the data is sensible and as expected.

Data can be validated to ensure that is:

● of the correct type, such as integer or string

● within a sensible range, such as between 1 and 100

● of the correct length, such as 8 characters or more

● present, to stop users leaving certain information empty; this is known as a presence
check.

Worked example

The following program shows the previous banking application program, but this time
the input has been partially validated. The user cannot enter a value below 0 and cannot
withdraw more than their current balance. The WHILE loop ensures that they are
continually asked for a withdrawal amount until the value entered is validated successfully.

balance = 100
withdraw = 0
while (withdraw <=0) or (withdraw > balance)
withdraw = input("enter amount to withdraw in £")
 if withdraw < 0 then
 print("You must withdraw a positive amount")
 elseif balance < 0 then
 print("You are overdrawn!")
 elseif withdraw > balance then
 print("You cannot withdraw more than your balance")
 endif
endwhile
balance = balance – withdraw
print("your balance is now", balance)

Of course, there would be more to do; the user can still leave the input amount blank or
enter a non-numeric value.

Knowledge check

4 State what is meant by validation.
5 Suggest two rules that could be used to validate a date of birth entered by a user.
6 Explain why someone’s name could not easily be validated.

Tech term

Presence check A data
validation method that
prevents users from
leaving a field blank.

Key point

Validation cannot check
that data is correct, only
that it follows certain rules.
For example, a programmer
could validate that a phone
number entered is made
up entirely of numbers
and starts with a 0. If a
phone number of 123ABC
was entered, this would
be rejected as invalid.
However, if a user entered
a valid phone number but
mistakenly entered the
wrong digits, this would not
be identified.

9781510484160.indb 154 27/05/20 7:21 PM

155

2.
3.

1
D

ef
en

si
ve

 d
es

ig
n

Maintainability
Over time, programs may need to be modified as the requirements of users change. Errors
may also be spotted that require fixing by programmers who did not write the original
code. A maintainable program is one that the original programmer has deliberately made
straightforward to understand and modify. This can be achieved in the following ways.

Use of subprograms

By splitting programs down into multiple subprograms, code repetition can be reduced
and the overall number of lines of code can be smaller. This also means that important values
and processes can be modified in one place in the code without having to find every time that
process is used.

Worked example

Example A Example B

price1 = 100 * 1.2
print ("the price is £",price1)
price2 = 87 * 1.2
print ("the price is £",price2)
price3 = 35 * 1.2
print ("the price is £",price3)
price4 = 17 * 1.2
print ("the price is £",price4)
price5 = 99 * 1.2
print ("the price is £",price5)
price6 = 400 * 1.2
print ("the price is £",price6)

procedure calculate(price)
 newprice = price * 1.2
 print ("the price is

£",newprice)
endprocedure

calculate(100)
calculate(87)
calculate(35)
calculate(17)
calculate(99)
calculate(400)

In the examples above, both examples take six prices and add 20% in tax before printing
the value. However, example A achieves this through copying and pasting the code whereas
example B uses a subprogram.

Example B is not only shorter but is much easier to follow through. Crucially, if the tax rate
changes from 20%, in example B it only needs to be changed in one place. This makes the
program much more maintainable.

Naming conventions

Using meaningful variable and subprogram identifiers helps to identify their purpose. Suitable
naming conventions will allow future programmers to see much more clearly how a
program works.

A programmer will be unsure what a variable called x, temp or abc should contain – but
variables called username, pointsScored or loggedIn give a very clear indication of
what data they store.

Indentation

Indentation is a way of formatting a program to highlight the structure of the code. This
makes it easier for a programmer to read through the code and follow the process. Indentation
is used to show that code belongs inside a particular block.

The TAB key or a number of spaces (usually three or four) can be used to indent lines of code,
but this should be done consistently.

Beyond the spec

Variable and subprogram
identifiers with multiple
words have always
been problematic, as
spaces are not allowed.
One solution is to
use camelCase,
a naming convention
where no spaces
are used but new
words are indicated
by capital letters.
Therefore, ‘current
pay rate’ would be
currentPayRate
and ‘total sales’ would be
totalSales. Note
that the first letter is
always in lowercase.

An alternative would be
snake_case, where
spaces are replaced
by underscores, giving
current_pay_
rate and
total_sales.

9781510484160.indb 155 27/05/20 7:21 PM

156

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

Worked example

The following program would work but is hard to follow:

score = 100
while score >0
new = input("enter a value")
if new > 10 then
score = score – new
endif
endwhile
print("complete")

Which lines of code will be repeated inside the WHILE loop? If the value entered is greater
than ten, which lines of code will be executed as a result?

The following program is identical but includes indentation to make it much easier to follow:

score = 100
while score >0
 new = input("enter a value")
 if new > 10 then
 score = score – new
 endif
endwhile
print("complete")

Commenting

Comments are lines of code that are ignored by the translator when the program is run.
They are extremely useful for programmers to identify the purpose of each section and how
the code is intended to work.

OCR Reference Language uses // to indicate a comment. Other high-level languages may use
other symbols such as # or '.

Worked example

The code shown in green below is ignored by the translator. It is added solely to allow
programmers to understand how the program works. This makes the code much more
maintainable.

function volume(height,width,depth)
 //function to calculate the volume of a cuboid
 return (height * width * depth)
endfunction

Knowledge check

7 Describe why maintainability is so important to computer programmers.
8 Give two rules to be followed when sensibly naming a variable.
9 Give two other ways that a program can be made to be more maintainable.

10 Which of the following lines of code would be most helpful to a programmer trying to
work out how a program works? Explain why.
w = (y*t) + b
totalWages = (hoursWorked * payRate) + bonus

Key point

Note that Python uses
indentation differently
to most other languages.
Python insists that code
is indented to function
correctly, whereas most
other languages, such as
Visual Basic or C#, use
optional indentation.

9781510484160.indb 156 27/05/20 7:21 PM

157

2.
3.

2 T
es

tin
g

2.3.2 Testing

No matter how well written a program is, there is always the chance that errors have crept
in. Testing allows us to systematically check that a program functions as it should in all
circumstances.

The purpose of testing
The purpose of testing is to ensure that the program functions as expected and meets all
requirements. However, testing should also be destructive; that is, we should not simply aim
to prove that the program works, but we should also try to do all we can to break it. Only by
knowing that it cannot easily be broken can we be satisfied that it works.

For instance, if we create a program for a hot drinks machine that should give us a selection of
drinks for £1 each, is it enough to test it by inserting £1 and pressing the corresponding drink
button? This is a starting point, but if we only relied on this test we may not realise that someone
is able to get a drink without inserting any money. Only by testing it destructively and trying to
see if there is any other way of getting a drink for less than £1 can we be sure that it works fully.

Types of testing
There are many types of testing, but only two are covered in the OCR GCSE Computer Science
specification: iterative testing and final/terminal testing. Both are important for different
reasons.

Iterative

Iterative testing is the process of testing each part of the program as it is developed,
focusing exclusively on how that section works. Testing on a modular basis like this allows a
programmer to be sure that any new code functions correctly by itself, interacts properly with
other modules and does not introduce new errors.

For example, if a 2D game were to be developed, the first module to be written may be the
code to display the user’s character and move it around on screen. This code would then be
tested thoroughly to ensure that it works before moving on to develop the next module.

Iterative testing is repeated for each new module that is developed.

Final/terminal

Final (or terminal) testing is completed near to the end of development; the whole
program is tested for functionality and the individual detail of each module is ignored. The
point of final testing is to check whether the system as a whole works correctly.

For example, final testing of a game would involve playing each level to try and ensure that the
game contains as few errors as possible.

Beyond the spec

Final testing is sometimes referred to as ‘black box testing’ because it treats a program as
a ‘black box’ with no interest in what happens inside the box or how it works. The only
concern is whether the inputs and outputs work as expected.

‘White box testing’ is the opposite of black box testing – the only interest is what is
happening ‘inside the box’, that is, how each of the modules work. White box testing is
an alternative name for iterative testing.

Tech term

Destructive testing
Instead of simply checking
whether a program works
as intended, destructive
testing actively tries to
find ways to break the
program.

Tech term

Modular Subdividing
into small independent
sections.

9781510484160.indb 157 27/05/20 7:21 PM

158

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

Knowledge check

11 What is meant by ‘destructive testing’?
12 State the purpose of testing.
13 Explain one difference between iterative testing and final testing.

Identifying syntax and logic errors
If errors are found, they could either be syntax errors or logic errors. A syntax error
breaks the grammatical rules of the programming language in some way, such as missing
off a quotation mark, misspelling a keyword or using assignment incorrectly. A syntax error will
cause the program to stop running (or not run in the first place) because the translator does
not understand the instruction given.

Worked example

The code below contains a number of syntax errors.

num = input("enter a number
10 = x
pritn(num + x)

First, the input statement on the first line is missing the closing quotation mark and closing
bracket. Next, the assignment statement on the second line is the wrong way around (it
should be x = 10). Last, the keyword print has been misspelled as pritn. Any one of
these errors would stop the program from running and would produce a syntax error.

A logic error by comparison is an error in the algorithm that does not stop the program from
running but does not produce the correct output. This is usually caused by the programmer
writing instructions that have the correct syntax but do not do what was intended.

Worked example

The code below contains a logic error.

function addup(a, b)
 return a * b
endfunction

The intention of the function is to add up the two numbers passed in as parameters.
However, the function instead multiplies the two numbers. This is a valid instruction
and would not cause the program to stop, but it is certainly not what the programmer
intended.

Knowledge check

14 Give one difference between a logic error and a syntax error.
15 A programmer writes the line IF x > FOR . Explain whether this would cause a logic

or syntax error.
16 A programmer finds that a function to calculate values does not work properly when

negative values are passed in as parameters. Explain whether this would be caused by a
logic or syntax error.

Key point

Syntax errors are errors
relating to the rules of the
programming language.
A program containing a
syntax error will not run and
hence it is clear that there
is an issue with it. Programs
containing logic errors do
run but do not produce the
desired output. Logic errors
are harder to spot because
it is not always immediately
clear that there is an issue
with the program.

9781510484160.indb 158 27/05/20 7:21 PM

159

2.
3.

2 T
es

tin
g

Selecting and using suitable test data
To test a program effectively, a test plan is needed. This plan lists all of the tests that will be
carried out, the test data to be used and the expected outcome. Test data should cover as
many of the following situations as possible.

Normal

Normal test data is data of the correct type that would typically be expected from a user who
is correctly using the system. This should be accepted by the program without causing errors.

Boundary

Boundary test data is data that is of the correct type but is on the very edge of being valid.
Boundary test data should be accepted by the program without causing errors.

Invalid

Invalid test data is data that is of the correct type but outside the accepted limits. Invalid
test data should be rejected by the program.

Erroneous

Erroneous test data is data that is of the incorrect type and should be rejected by the
system. For example, if a program expected numeric input, a string would be erroneous input.

Consider this example: A system allows a user to enter a value between 0 and 100, with the
number being rounded up or down to the nearest ten. Any numbers outside the range 0 to
100 should be rejected.

There are many possible tests but a typical test plan could be as shown in this table.

Test data Type of test data Reason Expected result

47 Normal To check if values round up 50
32 Normal To check if values round down 30
0 Boundary To check the low boundary 0
100 Boundary To check the high boundary 100
-1 Invalid To check if numbers below 0 are rejected Rejected
101 Invalid To check if numbers above 100 are rejected Rejected
‘Twelve’ Erroneous To check data of the wrong type is rejected Rejected

Knowledge check

17 State what is meant by normal test data.
18 Describe how boundary test data is different from invalid test data.
19 A system should allow passwords that are between eight and 15 characters in length.

Suggest one suitable item of invalid test data for this system.
20 Complete the following test plan for a system that checks if users are 18 years of age or

older. Anyone younger than 18 should be rejected. Anyone 18 or over should be accepted.

Test data Type of test data Expected result

Normal
Boundary
Invalid
Erroneous

Key point

Test data should be listed
on a test plan using the
actual data that would be
entered. A very common
mistake is to simply describe
the test data (such as ‘a
number larger than 100’).
This is not specific enough;
instead an actual value (e.g.
101) should be included in
the test plan.

9781510484160.indb 159 27/05/20 7:21 PM

160

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

Refining algorithms
Refining an algorithm means to improve it. If testing has picked up any errors, an obvious
improvement would be to fix the problem.

Worked example

The code below should allow values between one and ten.

num = input("enter a value between 1 and 10")
if num > 1 and num < 10 then
 print("Allowed")
else
 print("Not allowed")
endif

When this code is tested thoroughly, a number of errors are discovered. These are shown in
the test plan below.

Test
data

Type of
test data

Reason Expected result Actual result

5 Normal Check valid data Allowed Allowed
1 Boundary Check low extreme of range Allowed Not Allowed
10 Boundary Check high extreme of range Allowed Not Allowed
0 Invalid Check low outside range Not allowed Not allowed
11 Invalid Check high outside range Not allowed Not allowed

The code can then be refined to ensure that it works on these boundaries and then tested
again.

num = input("enter a value between 1 and 10")
if num >= 1 and num <= 10 then
 print ("Allowed")
else
 print ("Not allowed")
endif

Another way that code could be refined would be to make it more efficient. Code that repeats
may benefit from being split into subprograms or by using iteration to reduce this repetition.
Comments, indentation and naming of variables can all be used to refine a program and make
it more maintainable. Subprograms (and functions in particular) can also be used to make the
code far more reusable in the future.

Knowledge check

21 State what is meant by the term ‘refine’ in relation to an algorithm.
22 Describe two issues that mean an algorithm would need to be refined.

Key point

Refining an algorithm means
to improve it. This may be
an improvement that makes
it function correctly or
just to be more efficient or
maintainable.

Tech term

Efficient A more
efficient program is one
that produces exactly
the same results with
fewer lines of code.

9781510484160.indb 160 27/05/20 7:21 PM

161

RE
C

A
P

A
N

D
 R

EV
IE

W

A robust program is one that functions correctly even if the input
data, intended use or situation changes. Defensive design and
testing help to make programs robust.

2.3.1 Defensive design
Defensive design means thinking ahead about problems that could
occur. It involves the following areas.

Defensive design considerations
■ Anticipating misuse is thinking about ways that users could

cause the program to fail. This could be either deliberate or
accidental on the user’s behalf. These potential problems can
then be dealt with.

■ Authentication is checking the identity of a user. This could be
done by using a username and password, through possession
of a unique electronic key or through biometrics (biological
measurements).

Input validation
Input validation is checking whether data matches certain rules
as it is input. These rules can check that data is sensible but can
never show that the data is correct. For example, ST13 7TY would
be a sensible postcode and meets the defined rules, but it is not
possible for a computer to easily decide whether it is actually that
user’s postcode.

Maintainability
Maintainability is ensuring that a program is as easy to understand
and modify as possible for other future programmers. It involves
the following:

■ Use of subprograms is covered more in Chapter 2.2
(Programming Fundamentals). Splitting programs down into

RECAP AND REVIEW
2.3 PRODUCING ROBUST PROGRAMS

Important words

You will need to know and
understand the following for
the exam:

Defensive design
Anticipating misuse
Authentication
Two-factor authentication
Input validation
Maintainability
Subprograms
Naming conventions
Indentation
Commenting
Testing
Iterative testing
Module
Final testing
Terminal testing
Syntax errors
Grammatical rules
Logic errors
Test data
Normal test data
Boundary test data
Invalid test data
Erroneous test data
Test plan
Refining algorithms

9781510484160.indb 161 27/05/20 7:21 PM

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

162

2.
3

Pr
od

uc
in

g
ro

bu
st

 p
ro

gr
am

s

multiple subprograms reduces the need to copy and paste code, therefore making the overall
code shorter and easier to follow.

■ Variables and subprograms should use sensible naming conventions. Variables and subprograms
should be given identifiers that reflect their purpose. Identifiers cannot contain spaces and
cannot start with a numeric value.

■ Indentation is the use of the tab or space key to align code in a program. Indenting is used
to highlight the structure of code and show which code belongs inside a particular block. Code
after IF statements and iteration in particular should be indented.

 Python requires correct indentation for a program to function correctly. It is optional but
highly recommended in other high-level languages.

■ Commenting allows programmers to add notes to their program to explain what sections of
code do or how they work. These comments are ignored by the translator when the program is
executed.

2.3.2 Testing

The purpose of testing
The purpose of testing is to ensure that a program functions as expected and meets all
requirements. Testing should be destructive and aim to find errors, not just show that the program
works in one situation.

The types of testing
Iterative testing is testing during the development of a program. Each module is thoroughly
tested as it is completed. This type of testing is repeated for future modules.
Final/terminal testing is completed near to the end of program development. It is testing the
program as a whole for functionality.

Identify errors
A syntax error is one that breaks the grammatical rules of the programming language. Examples
include misspelling a keyword, missing a bracket or using a keyword in the wrong way. Syntax errors
will stop the program from running when encountered.
A logic error is one that causes the program to produce an unexpected or incorrect output but
will not stop the program from running.

Selecting and using suitable test data
Test data should be chosen so that the system as a whole can be tested destructively, checking
for errors wherever they may occur. Test data should be chosen to include as many of the following
as possible:

9781510484160.indb 162 27/05/20 7:21 PM

163

RE
C

A
P

A
N

D
 R

EV
IE

W

■ Normal test data is data of the correct type that would typically be expected from a user who
is correctly using the system. This should be accepted by the program without causing errors.

■ Boundary test data is test data that is of the correct type but is on the very edge of being
valid. Boundary test data should be accepted by the program without causing errors.

■ Invalid test data is test data that is of the correct type but outside the accepted limits.
Invalid test data should be rejected by the program.

■ Erroneous test data is test data that is of the incorrect type and should be rejected by the
system. For example, if a program expected numeric input, a string would be erroneous input.

A test plan lists all of the tests that will be carried out, the expected result and the actual result
in each case. For example:

Test data Type of test data Reason Expected result Actual result
Normal
Boundary
Invalid
Erroneous

Refining algorithms
Refining algorithms means improving them, either to fix errors found by testing or to make them
more efficient and maintainable using the methods described above.

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 163 27/05/20 7:21 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

164

1.3 COMPUTER NETWORKS,
CONNECTIONS AND
PROTOCOLS

2.
4

Bo
ol

ea
n

lo
gi

c

2.4.1 Boolean logic

George Boole (1815–1864) was an English mathematician who identified that all logical
decisions could be reduced down to simple True and False values. In computer science, the
Boolean data type, which can only be True or False, is named after him.

Computers store everything using electronic switches known as transistors, with on and off
represented by the binary values 1 and 0. These same 1s and 0s can also be used to represent
the True and False values of Boolean logic.

Key point

When discussing Boolean logic, 1 and 0 are usually used but you may see True and False, T and F or
even On and Off used. We will use 1 and 0, which is also how any questions in your examination will
be presented.

Truth tables
A truth table is a table used to display all possible inputs and associated outputs from a logic
system. Inputs are usually labelled with the letters from the beginning of the alphabet and the
output labelled using the letter P or Q.

As an example, consider the situation of learning to drive, where both a practical driving test
and a theory test are needed in order to be given a driving licence. We can assign the input A
to ‘passes the practical test’, input B to ‘passes the theory test’ and output P to ‘can be given
a driving licence’.

The table below shows a truth table for this logic system:

Practical test (A) Theory test (B) Driving licence (P)
0 0 0
0 1 0
1 0 0
1 1 1

Note how every possible combination of inputs is listed and the associated output for those
inputs given. We can see that if someone fails both tests, they cannot be given a driving licence.
If they pass one of tests but fail the other, they are still unable to be given a driving licence.
However, if both tests are passed then a driving licence can be given.

Some logic systems have more than two inputs. For example, a logic system with four inputs
would be labelled with inputs A, B, C and D. The more inputs, the more rows are needed in
the truth table; a 4-input truth table would have 16 possible permutations of input values.

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

2.4.1 Boolean logic

➤	 Truth tables

➤	 Simple logic diagrams
using the operators
AND, OR and NOT

➤	 Combining Boolean
operators using AND,
OR and NOT

➤	 Applying logical
operators in truth
tables to solve
problems

2.4

BOOLEAN LOGIC

Figure 2.4.1 George Boole the
inventor of Boolean logic

Tech term

Boolean data type
Data that can only have
the values TRUE (1) or
FALSE (0).

9781510484160.indb 164 27/05/20 7:21 PM

165

2.
4.

1
Bo

ol
ea

n
lo

gi
c

Simple logic diagrams using the operators
AND, OR and NOT
Logic gates are circuits within a computer that produce a Boolean (i.e. 1 or 0) output when
given Boolean inputs. There are three logic gates that we need to know about for GCSE: NOT,
AND and OR.

NOT gate

The NOT gate is sometimes known as an inverter. It only has one input and it outputs the
opposite of the value input. If a 0 is supplied as input then a 1 will be produced as output.
Conversely, if a 1 is supplied then a 0 will be output. This is shown in the truth table below.

A P
0 1
1 0

The diagram used to denote a NOT gate is shown in Figure 2.4.2.

Output
P

Input
A

Figure 2.4.2 A NOT gate

AND gate

An AND gate has two inputs and only produces a 1 as output if both of the inputs are 1s. If
any other combination of inputs is given then the output will be 0.

A B P
0 0 0
0 1 0
1 0 0
1 1 1

The diagram used to denote an AND gate is shown in Figure 2.4.3.

A

B

Output
P

Inputs

Figure 2.4.3 An AND gate

OR gate

An OR gate has two inputs and produces a 1 as output if either or both of the inputs are
1s. If both inputs are 0 then the output will be 0.

A B P
0 0 0
0 1 1
1 0 1
1 1 1

9781510484160.indb 165 27/05/20 7:22 PM

166

2.
4

Bo
ol

ea
n

lo
gi

c

The diagram used to denote an OR gate is shown in Figure 2.4.4.

Inputs
A

B

Output
P

Figure 2.4.4 An OR gate

An easy way to remember the purpose of the three logic gates is to think about what inputs
produce a 1 output.

● NOT requires the input NOT to be 1

● OR requires inputs A OR B (or both!) to be 1

● AND requires inputs A AND B to be 1.

Combining Boolean operators using AND,
OR and NOT

AND and NOT gates

The three logic gates shown can be combined into more complex logic systems. For example,
we could connect a NOT gate to the output of an AND gate.

A

B

Output
R

Output
P

Inputs

Figure 2.4.5 An AND gate connected to a NOT gate

The output for this can be worked out in stages. It is useful to think about the output of each
gate in turn and we can even add this to our truth table. Here, R is the output from the first
part of the logic diagram and P is the final output.

A B R = (A AND B) P = (NOT R)
0 0 0 1
0 1 0 1
1 0 0 1
1 1 1 0

Another way of describing this system is: NOT (A AND B).

AND and OR gates

This logic system has three inputs, with the output of the AND gate feeding into one input of
an OR gate. An additional input C is also given.

Another way of describing this system is: (A AND B) OR C.

Inputs
A

B

C

R
Output

P

Figure 2.4.6 An AND and OR gate

9781510484160.indb 166 27/05/20 7:22 PM

167

2.
4.

1
Bo

ol
ea

n
lo

gi
c

The truth table now requires more rows to cater for all of the possible input values.

The first thing you need to do is fill in all of the different permutations of the inputs A, B and C.

A B C R = (A AND B) P = (R OR C)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Then you need to fill in the values for R for all permutations of A and B.

A B C R = (A AND B) P = (R OR C)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Once the R column is completed you can then fill in the values for P for all the permutations
of R or C.

A B C R = (A AND B) P = (R OR C)
0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 1
1 1 1 1 1

Key point

To make sure that you don’t miss out any permutations of input values, try counting up in binary,
starting at 000 (if you have three inputs), then 001, 010, 011 and so on.

Another check is that with n inputs, there should always be 2n rows in the truth table (not counting
the heading). This means that for 3 inputs, we need 23 = 2 × 2 × 2 = 8 rows.

9781510484160.indb 167 27/05/20 7:22 PM

168

2.
4

Bo
ol

ea
n

lo
gi

c

Knowledge check

Create truth tables for the following expressions.

1 P = C AND (A OR B)

A

B

C

P

2 P = A OR (NOT B)

P

A

B

3 P = NOT (A OR B)

P

B

A

4 P = NOT A AND (NOT B OR C)

B

C

P

A

5 (NOT A AND NOT B) OR C

B C

C

P

A

Creating logic diagrams from expressions

So far, we have been given logic diagrams to work from. However, it is important that we can
draw logic diagrams when given the equivalent expression.

Take the example P = NOT (A AND B) AND C.

9781510484160.indb 168 27/05/20 7:22 PM

169

2.
4.

1
Bo

ol
ea

n
lo

gi
c

As with mathematics, use of brackets help us to decide what has priority. In this case, A AND
B is an expression in brackets and therefore should be looked at first. The logic diagram for this
is shown in Figure 2.4.7.

A

B

Output
P

Inputs

Figure 2.4.7 A AND B

Next, the NOT gate should be applied to this expression to give us NOT (A AND B). The logic
diagram for this is shown in Figure 2.4.8.

B

A
P

Figure 2.4.8 NOT (A AND B)

Note that the NOT gate is applied to the output of the expression A AND B, not on either of
the inputs.

Finally, the expression is complete by joining the output of NOT (A AND B) in the previous stage
to AND C. This gives us NOT (A AND B) AND C as shown in the logic diagram in Figure 2.4.9.

B

C

A

P

Figure 2.4.9 NOT (A AND B) AND C

The truth table for this logic diagram is:

A B C P
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

Knowledge check

Create logic diagrams for the following expressions:

6 P = A OR (NOT B)
7 P = A OR (B OR C)
8 P = A AND (NOT B)
9 P = (A OR B) OR (C OR D)

9781510484160.indb 169 27/05/20 7:22 PM

170

2.
4

Bo
ol

ea
n

lo
gi

c

Applying logical operators in truth tables to
solve problems
Reducing real-life problems down to Boolean logic statements can help us to decide what
inputs are needed to produce certain outputs.

Imagine a family looking to book a holiday. They have a budget of £2000 for the holiday
and they would like this to be somewhere with a pool. However, if a holiday in the USA was
available at this price, with or without a pool, they would be happy.

We can construct this situation as a logic statement.

Let P be the outcome of being happy with the holiday. The inputs can also be defined :

● A = costs £2000 or less

● B = has a pool

● C = is in the USA

A must be met; the family only have this in their budget to spend. However, either B or C can
be true for the family to be happy.

This situation is equivalent to the logic statement P = A AND (B OR C).

The truth table for this logic statement is therefore:

A B C B OR C P = A AND (B OR C)
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

This then allows us to apply these logical rules to check if certain holidays are appropriate.

Knowledge check

10 Find the row in the above truth table that relates to each of these holidays:
(a) Costs £1800 in Spain with a pool
(b) Costs £2500 in the USA with no pool
(c) Costs £1996 in France with no pool

11 Give the details of one further holiday that would give a TRUE (1) output from this logic
system.

12 Draw the logic gates that match the logic statement P = A AND (B OR C)
13 The family go to the cinema. They would be happy if the film is NOT an 18 certificate

and lasts less than 2 hours. Create a truth table for this situation where A = the film is an
18 certificate and B = lasts less than 2 hours.

9781510484160.indb 170 27/05/20 7:22 PM

171

RE
C

A
P

A
N

D
 R

EV
IE

W

2.4.1 Boolean logic
Boolean logic uses two values – True and False. These are represented
in computer systems using binary 1 and 0 values.

Truth tables
Truth tables show all possible input permutations and the
corresponding outputs for a logic system.
If a logic system has n inputs, it will have 2n possible input permutations.
This equals the number of rows in the truth table, for example with
three inputs it will have 23 = 2 × 2 × 2 = 8 rows.
Inputs are labelled with letters from the start of the alphabet; outputs
are typically labelled as P, Q and later letters from the alphabet.

Logic diagrams
NOT gate
A NOT gate reverses the input given to it. If a 0 is input, a 1 will be
output and vice versa. It is sometimes known as an inverter for this
reason.

A P = (NOT A)
0 1
1 0

AND gate
An AND gate gives a 1 output only if both inputs are 1s. Any other
inputs (0,0 / 0,1 / 1,0) give a 0 output.

A B P = (A AND B)
0 0 0
0 1 0
1 0 0
1 1 1

Output
P

Input
A

A NOT gate

A

B

Output
P

Inputs

An AND gate

RECAP AND REVIEW
2.4 BOOLEAN LOGIC

Important words

You will need to know and
understand the following
for the exam:

Truth table
Boolean operators – NOT,

AND, OR
NOT gate
AND gate
OR gate

9781510484160.indb 171 27/05/20 7:22 PM

2.
4

Bo
ol

ea
n

lo
gi

c

172

2.
4

Bo
ol

ea
n

lo
gi

c

OR gate
An OR gate gives a 1 output if either (or both) inputs are 1s. If both inputs are 0s, the output will
be 0.

A B P (A OR B)
0 0 0
0 1 1
1 0 1
1 1 1

Combining Boolean operators
Logic gates can be combined by joining the output of one gate to the inputs of another gate. To
decide on the output for a particular set of inputs, trace the system through from left to right.

Output
P

Inputs
A

B

C

(A OR B) OR NOT C

If the inputs 1, 0, 1 were input as A, B and C into this logic system, we can work out the output of
each logic gate individually. Firstly, the first OR gate takes input of 1 and 0, giving a 1 output. The
NOT gate will take input of 1, giving a 0 output. This means that the final OR gate will have inputs
of 1 and 0, giving a 1 output.

The final truth table for this system would be:

A B C A OR B NOT C P = (A OR B) OR NOT C
0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 1
1 0 0 1 1 1
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 0 1

We can therefore see from this truth table that 0, 0, 1 is the only permutation of inputs that
produces a 0 output. Every other set of inputs gives a 1 output.

Inputs
A

B

Output
P

An OR gate

9781510484160.indb 172 27/05/20 7:22 PM

173

RE
C

A
P

A
N

D
 R

EV
IE

W

Applying logical operators in truth tables to solve problems
Real-world problems can be solved by applying logic to them and using truth tables to decide on
the output for each set of inputs.

For example, ‘I will go and watch Port Vale play football only if they are at home and it is not raining’
can be written as P = A AND NOT B, where P is ‘I will watch Port Vale’, A is ‘they are at home’ and
B is ‘it is raining’. The truth table for this is:

A (At home) B (Raining) NOT B P = A AND NOT B
0 0 1 0
0 1 0 0
1 0 1 1
1 1 0 0

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 173 27/05/20 7:22 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

174

2.5
2.

5
Pr

og
ra

m
m

in
g

la
ng

ua
ge

s a
nd

 in
te

gr
at

ed
 d

ev
el

op
m

en
t e

nv
iro

nm
en

ts

PROGRAMMING LANGUAGES
AND INTEGRATED
DEVELOPMENT ENVIRONMENTS

CHAPTER
INTRODUCTION
In this chapter you will
learn about:

2.5.1 Languages

➤	 Characteristics and
purpose of different
levels of programming
language

➤	 The purpose of
translators

➤	 The characteristics
of a compiler and an
interpreter

2.5.2 The integrated
development
environment (IDE)

➤	 Common tools and
facilities available in an
IDE

2.5.1 Languages

As we have previously seen, every computer contains a processor that fetches, decodes and
executes instructions. These instructions are given to the computer by programmers, but the
language that the instructions are given in could take many forms.

Characteristics and purposes of different
levels of programming language
You may be able to name many programming languages; as part of the GCSE Computer
Science course you are required to have practical experience of programming in at least one
textual language. You may have heard of Python, Java, Visual Basic and many more, but the
surprising fact is that a processor cannot execute instructions in any of these languages – they
all have to be translated into machine code before they can be executed.

As covered in Chapter 1.1, processors can only execute instructions in machine code, which is
in binary form. For example, a machine code program executed by the processor would have
to look something like this:

10110101 10010010
01101101 10110001
00100111 11100101
01101101 10110001

In fact, early computers were programmed in this way. Binary 1s and 0s could be input into the
computer by physically moving switches or connecting wires, as with ENIAC, the Electronic
Numerical Integrator And Computer, which was first used in 1945 – see Figure 2.5.1.

Figure 2.5.1 The early computer ENIAC (Electronic Numerical Integrator And Computer)

9781510484160.indb 174 27/05/20 7:22 PM

175

2.
5.

1
La

ng
ua

ge
s

Other computers allowed programs to be input using punched paper, tape or cards to represent
the binary 1s and 0s. Entering instructions in binary was obviously very time-consuming and
mistakes were hard to spot. Every different type of computer also had their own version
of machine code and so programs written on one computer would not necessarily run on
another computer.

Low-level languages

Machine code is a low-level language. This means that it can be run directly by the
processor with no translation needed. It also has little or no abstraction; each instruction
deals directly with the computer’s hardware and so a machine code programmer would need
to understand the inner workings and hardware structure of the processor. Something as
simple as adding two numbers up would take numerous steps to load data into registers,
perform the addition and then store the answer in memory. The programmer would need to
specify each of these steps.

Low-level programs are also hardware dependent – they will not run on a different type of
computer as the machine code instructions for that computer are likely to be different.

One simple way to make low-level programming slightly easier is to replace the binary
machine code instructions with short mnemonics (such as replacing 00100111 with ADD).
This is known as assembly language and a program called an assembler would convert the
mnemonics back into their binary equivalents before the processor executes it. Assembly
language is another low-level language. The Little Man Computer is an excellent introduction
to programming using assembly language.

One advantage of low-level programming is sheer speed of program execution. Using machine
code allows a programmer to make their program run as fast as possible with no unnecessary
routines. Programmers can also be very efficient in their use of primary and secondary storage.

Low-level languages such as machine code were once the only way to program a computer.
Nowadays, it is only used when direct access to the hardware is needed (such as for device
drivers) or where speed on relatively low-powered hardware is important (such as in embedded
systems).

High-level languages

Languages like Python and JavaScript are examples of high-level languages. There are
many different high-level languages, each with their own specific use. For example, PHP and
JavaScript are used to create web applications, whereas Visual Basic is commonly used to
create desktop applications for Windows computers.

Figure 2.5.2 A simple program written in Python

Programs written in high-level languages use English-like syntax, with keywords such as
WHILE or IF. This means that they are much easier for programmers to use and errors can be
spotted much more easily.

High-level programming languages also use abstraction to hide away details of the underlying
processor operations that are needed to execute a line of code. For example, the line

x = 1 + 2

Tech terms

Machine code
Instructions in binary
that a processor can
execute directly.

Abstraction Removing
unnecessary detail;
the programmer of
a high-level language
does not need to know
exactly how a processor
performs a particular
task; high-level language
instructions are an
abstract representation
of what is actually
happening in the
processor itself.

Mnemonics In assembly
language, a text code
that represents a
machine code operation.

Assembly language A
low-level language –
but not as low-level as
machine code.

Key point

Java and JavaScript are two
very different languages.
They may share the same
first part of their name, but
then again so do ham and
hamster or car and carpet.

9781510484160.indb 175 27/05/20 7:22 PM

176

2.
5

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s a

nd
 in

te
gr

at
ed

 d
ev

el
op

m
en

t e
nv

iro
nm

en
ts

in a high-level language actually requires the processor to do three things:

● load the first value into the accumulator (1)

● add the second value to it (+2)

● store the result at the memory address referenced by the label.

By hiding this underlying detail, programming becomes much easier. It also means that high-
level languages are hardware independent – which means they can run on many different
types of computer.

However, programs written in high-level languages cannot be executed directly by the
processor in a computer. They must first be translated into machine code, a process that takes
time to carry out.

The purpose of translators
A translator is a piece of software that converts high-level code into low-level machine code
that can then be executed by the processor. Without translators, high-level programming
languages like Python would not exist.

Figure 2.5.3 Grace Hopper and colleagues programming the UNIVAC

The characteristics of a compiler and
an interpreter
Translators come in two types: compilers and interpreters.

A compiler works through the high-level code, translating every line into machine code.
After the compilation process has translated the whole file, an executable file is produced that
the processor can run directly. The executable file can be saved and run in the future without
needing to compile it again.

Most applications that a user would buy or download will have been compiled; the executable
file is distributed so that users can run it. This also has the advantage of not allowing users to
view or modify the high-level program code.

In contrast, an interpreter translates one line of high-level code and then immediately runs
this before moving on to translate and run the next line of code. No executable file is produced
and when the program is run again in the future the interpreter must retranslate every line of
code again. If code that is run using an interpreter is distributed, all of the source code for the
program must be shared.

Key point

High and low in this
context refers to the level
of abstraction away from
the processor. Low-level
languages are so-called
because they are very
closely related to how the
processor works. High-level
languages are much further
away.

Beyond the spec

Grace Hopper
(1906–1992) was an
American Computer
Scientist who created
the first ever translator
in 1952. By 1956, she
had programmed the
UNIVAC (Universal
Automatic Computer)
to translate 20 English-
like statements into
machine code.

9781510484160.indb 176 27/05/20 7:22 PM

177

2.
5.

2
Th

e
in

te
gr

at
ed

 d
ev

el
op

m
en

t e
nv

iro
nm

en
t (

ID
E)

Another important difference between compilers and interpreters is the speed of execution
of programs. Because compilers translate everything first, the program itself runs quickly.
Conversely, because interpreters only translate one line at a time, this translation is happening
while the program is running which slows it down.

Code that is run using an interpreter is fully portable – as long as the computer you are using
has an interpreter you can run the code regardless of operating system. Compiled code, by
contrast, is specific to a particular operating system and therefore cannot be shared across
different operating systems.

Figure 2.5.4 Python interpreter available for PC (Windows, Linux) and Mac (OSX)

Knowledge check

1 Name three high-level languages.
2 Give two advantages that high-level languages have over low-level languages.
3 Give one advantage that low-level languages have over high-level languages.
4 Give two ways that code can be translated from high-level code into machine code.

2.5.2 The integrated development
environment (IDE)

An integrated development environment (IDE) is a piece of software that provides
all of the tools required to develop computer programs.

Figure 2.5.5 An IDE

Key point

Both compilers and
interpreters are hardware
dependent. Different
processors or computers
require different translators,
even if the high-level
language that they translate
is the same.

9781510484160.indb 177 27/05/20 7:22 PM

178

2.
5

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s a

nd
 in

te
gr

at
ed

 d
ev

el
op

m
en

t e
nv

iro
nm

en
ts

Common tools and facilities available in
an IDE
IDEs include everything a programmer needs in one place. By opening up one piece of
software, the programmer can enter their code, check it for errors and then run the code. It
is possible to have separate pieces of software to do each of these tasks, but an IDE is much
more convenient.

A standard IDE will include four tools as a minimum.

Editors

The editor is where the programmer can enter their code and make any changes that they
require. This can be relatively simple and just allow text to be entered and saved, for example
Notepad in Windows or Vi/Nano in Unix.

Text editors do not support formatting like underline or bold. However, some editors do include
pretty printing , which formats code to make it easier to understand, such as displaying all
variables or keywords in a certain colour or automatically indenting code.

Figure 2.5.6 Pretty printing in Python

Some editors include automatic completion of code, so that when the programmer types
WHI (for example), the WHILE keyword will be suggested.

Figure 2.5.7 Visual Studio automatically completing code

Error diagnostics

All IDEs have features which help programmers find and fix errors in their code. These are
known as debuggers or error diagnostics. As part of this, breakpoints can be set,
which is a marked line in the program where execution will stop.

Figure 2.5.8 A breakpoint being set in Python

Tech term

Pretty printing
Automatic colour
formatting in an editor
that makes the code
easier to read.

Tech term

Breakpoints A line
in the code where an
executing program is
instructed to stop.

9781510484160.indb 178 27/05/20 7:22 PM

179

2.
5.

2
Th

e
in

te
gr

at
ed

 d
ev

el
op

m
en

t e
nv

iro
nm

en
t (

ID
E)

Once execution has stopped at a breakpoint, the programmer can step through the program
line by line to investigate how the program runs and check the contents of variables at
that point.

Runtime environment

When a programmer has written a program, the runtime environment is the part of
the IDE that allows it to run. In most IDEs, this is accessed through a ‘run’ menu option, or
sometimes a ‘play’ button.

A runtime environment provides a quick way for the programmer to test what they have
written without needing to open any other programs. For some programming languages such
as Java, this may involve using a virtual machine to run the code. For web-based languages
such as PHP, this may involve software that acts as a web server to allow the code to run.

Translators

As we have covered previously, a translator converts high-level code into low-level machine
code so that the processor can execute it. Most IDEs contain a compiler or an interpreter,
or both.

Knowledge check

5 State what is meant by the term ‘IDE’.
6 Explain the difference between an editor in an IDE and a Word Processor.
7 Give two methods of debugging code that an IDE provides.
8 Apart from an editor and error diagnostics, give one other tool that an IDE provides.

Tech term

Virtual machine An
emulator of a particular
computer system.

9781510484160.indb 179 27/05/20 7:22 PM

180

2.
5

Pr
og

ra
m

m
in

g
la

ng
ua

ge
s a

nd
 in

te
gr

at
ed

 d
ev

el
op

m
en

t e
nv

iro
nm

en
ts

2.5.1 Languages

Characteristics and purposes of different
levels of programming language
Machine code and assembly language are low-level languages.
Python, C# and Visual Basic are examples of high-level languages.

Low-level languages High-level languages
Use binary (machine code) or
mnemonics (assembly language)
to represent instructions.

Use English-like keywords like
PRINT and WHILE

Hardware dependent – run on
one specific type of computer
only.

Hardware independent – will
run on many different types of
computer.

Refer directly to the computer’s
hardware. Programmers need to
understand how the processor
works.

Abstract (hide away) the
details of the processor.
Programmers can concentrate on
what the program needs to do.

Can be run directly by the
processor.

Must be translated into machine
code before they can be run.

The purpose of translators
Translators convert high-level programming code into machine code
so that the processor can execute it. High-level code cannot be
executed directly.
The characteristics of a compiler and
an interpreter

Compilers Interpreters
Translate every line of code in a program into
machine code and run it afterwards.

Translate one line of code and run that line,
repeating this process.

Produce an executable file. Do not produce an executable file.
Program can be run again without re-
compiling; simply run the executable file again.

Running the program again needs the
interpreter to retranslate every line of code.

Executable file can be distributed meaning
that users will not see the source code.

No executable file to distribute. Would need to
share the source code to distribute the program.

Compiled code runs quickly. Interpreted code runs more slowly than
compiled code.

RECAP AND REVIEW
2.5 PROGRAMMING LANGUAGES AND

INTEGRATED DEVELOPMENT ENVIRONMENTS

Important words

You will need to know and
understand the following
for the exam:

Language (programming)
Low-level language
High-level language
Translator
Compiler
Interpreter
Integrated development

environment (IDE)
Editor
Debuggers
Error diagnostics
Runtime environment

9781510484160.indb 180 27/05/20 7:22 PM

181

RE
C

A
P

A
N

D
 R

EV
IE

W

2.5.2 The integrated development environment (IDE)

Common tools and facilities available in an IDE
An integrated development environment (IDE) provides all of the tools that a programmer needs
to write and test programs in one place.
IDEs contain four main tools:

Tool Description
Editor ● A text editor to allow the programmer to enter or modify code in

their chosen language.
● May include auto-suggestion of keywords.
● May include pretty printing to colour code keywords and

automatically indent code.
Error diagnostics ● Tools to allow the programmer to find and fix errors.

● Breakpoints stop the program at a specific point.
● Stepping allows the programmer to run the code from this point

one line at a time.
● Variable contents can be checked.

Runtime environment ● Allows the programmer to run the code from within the IDE.
● The program output can be seen without opening additional

programs.
● May involve the use of a virtual machine.

Translators ● Converts the high-level code into machine code to allow execution by
the processor.

● IDEs include interpreters or compilers (or both).

Extra resources

A free set of practice questions accompanies this section and is available online at:
www.hoddereducation.co.uk/OCRGCSEComputerScience

These practice questions have not been produced either by OCR or by the OCR Principal Examiner. They are also not
endorsed by OCR and have not been subject to any OCR quality assurance processes.

9781510484160.indb 181 27/05/20 7:22 PM

http://www.hoddereducation.co.uk/OCRGCSEComputerScience

182

A
PP

EN
D

IX

Bubble sort

01 function BubbleSort(sortList)

//Set a flag to false to show array is not sorted

02 sorted = false

03 while sorted == false

//Set the flag back to true (assume pass will sort array)

04 sorted = true

//Step through the array, index by index

05 for sortCount = 0 to len(sortList) – 2

//Check if the element is larger than the one next door

06 if sortList[sortCount] > sortList[sortCount + 1] then

//If so – swap elements around using a ‘3-way’ swap

07 temp = sortList [sortCount]

08 sortList[sortCount] = sortList[sortCount + 1]

09 sortList[sortCount + 1] = temp

//The array was not sorted, so set the flag back to false

10 sorted = false

11 endif

//Move along the array index and check next element

12 next sortCount

13 endwhile

//Once sorted, return the array back

14 return sortList

15 endfunction

APPENDIX

9781510484160.indb 182 27/05/20 7:22 PM

183

A
pp

en
di

x

Explanation
In this example, a function is created that takes one parameter:

● sortList: An array of items to be sorted.

How does it work?

The algorithm works by using a FOR loop, nested within a WHILE loop.

● The WHILE loop keeps running until the array is sorted.

● The FOR loop is used to sort the elements within the array.

● Line 01: The function is defined with one parameter.

● Line 02: We create a ‘flag’ and set it to false – assuming the array is not sorted at the start of the algorithm.

● Line 03: We start the WHILE loop, which keeps running whilst the array is not sorted (sorted == false).

● Line 04: We assume that this next iteration will sort the array.

● Line 05: We use a FOR loop to iterate through the array.

● Lines 06–09: If the current element is greater than the one to the right, then it swaps these elements around.

● Line 10: Because a swap was made, the array is ‘unsorted’ and so the flag is set back to false.

● Line 12: The index is increased by 1, i.e. we move to the next index and Lines 06–09 are repeated.

● Line 13: Once the FOR loop exits, the WHILE loop iterates.

● Line 03: The WHILE loop checks to see if sorted is false and executes again if so.

 If sorted is true, we know the array is sorted.

● Line 14: Once sorted == true, we return the sorted list.

9781510484160.indb 183 27/05/20 7:22 PM

184

Insertion sort

01 function InsertionSort(sortList)

//Start with the 2nd element in the list and carry on until the last
//element in the list

02 for sortCount = 1 to len(sortList) − 1

03 listIndex = sortCount

//While not at the start of the list AND the value in the index position
//is less than the one to left of it

04 while listIndex > 0 and sortList[listIndex] < sortList[listIndex − 1]

//Swap the elements around

05 temp = sortList [listIndex]

06 sortList[listIndex] = sortList[listIndex + 1]

07 sortList[listIndex + 1] = temp

//Move back to the previous element (to the left) and test again

08 listIndex = listIndex − 1

09 endwhile

//Once the element is in the correct place, move to the next list index

10 next sortCount

//Return the sorted list

11 return sortList

12 endfunction

A
PP

EN
D

IX

9781510484160.indb 184 27/05/20 7:22 PM

185

Explanation
In this example, a function is created that takes one parameter:

● sortList: An array of items to be sorted.

How does it work?

The algorithm works by using a FOR loop with a WHILE loop nested inside.

● The FOR loop is used to move element by element through the sortList from the second element to end.

● The WHILE loop checks to see if an element in sortList is greater than the one to the left of it. It then repeats this
working backwards through the list, until the element is in the correct place.

● Line 02/03: The FOR loop is created to run through the array. Each time the sortCount is assigned to the listIndex
variable. This means that later we can decrement the listIndex variable without affecting the FOR loop pointer.

● Line 04: The WHILE loop checks to see if the value in the current index is larger than the one to the left.

● Line 05/06/07: If so, we swap the values.

● Line 08: We now need to check that the swapped value is in the correct place in the sorted sublist, so we reverse down
the array, checking and swapping if needed.

● Line 10: Once one element is sorted, we increase the FOR loop counter to check the next element in sortList.

● Line 11: Finally, we return the sorted array.

A
pp

en
di

x

9781510484160.indb 185 27/05/20 7:22 PM

186

Linear search
//Function is defined called LinearSearch

01 function LinearSearch(searchList, searchItem)

02 searchIndex = 0

//Loop through each index in the array searchList

03 while searchIndex < len(searchList)

//If the item in the searchList equals searchItem

//then we return true

04 if searchList[searchIndex] == searchItem then

05 return true

06 endif

//If a match is not made, increment the searchIndex

07 searchIndex = searchIndex + 1

08 endwhile

//If no match is found, then we return false

09 return false

10 endfunction

A
PP

EN
D

IX

9781510484160.indb 186 27/05/20 7:22 PM

187

Explanation
In this example, a function is created that takes two parameters:

● searchList: An array of items to be searched through.

● searchItem: The item to be searched for.

How does it work?

● Line 01: The function is defined with two parameters.

● Line 02: A loop counter searchIndex is set to 0.

● Line 03: The WHILE loop starts at index 0, and repeats until the end of the list.

 Using len(searchList) allows any array size to be used.

● Line 04 compares the element in the array with the item we are searching for.

 If the element matches the searchItem then true is returned.

 Because a return is used here, the function then terminates by default.

● Line 07: If there is no match, searchIndex increments by 1.

 The WHILE loop iterates (back to Line 03) using the new searchIndex value.

 The WHILE loop ceases to run if the end of the array is reached.

● Line 09: If the WHILE loop exits due to reaching the end of array then it returns false.

A
pp

en
di

x

9781510484160.indb 187 27/05/20 7:22 PM

188

Binary search

01 function BinarySearch(searchList, searchItem)

//Define the initial start and end points in the array

02 start = 0

03 end = len(searchList)

//Keep looping until only one element left

04 while start != end

//Find the mid-point between start and end

05 midPoint = (start + end) DIV 2

//If mid-point is greater, then value is to the left

06 if searchList[midPoint] > searchItem then

07 start = midPoint + 1

//If mid-point is less, then value is to the right

08 elseif searchList[midPoint] < searchItem then

09 end = midPoint – 1

//If we find a match, return true

10 elseif searchList[midPoint] == searchItem then

11 return true

12 endif

13 endwhile

//If no match is found then return false

14 return false

15 endfunction

A
PP

EN
D

IX

9781510484160.indb 188 27/05/20 7:22 PM

189

A
pp

en
di

x

Explanation
In this example, a function is created that takes two parameters:

● searchList: An array of items to be searched through.

● searchItem: The item to be searched for.

How does it work?

The algorithm works by continually splitting the list in half until it finds the value it is looking for or has eliminated all the
options.

● Line 01: The function is defined with two parameters.

● Line 02/03: An initial value for start and end are set.

 On the first pass, the start index is 0 and the end index is the final index in the array.

● Line 05 finds the middle of the array.

● Line 06 checks to see if the element in the array at the midpoint is greater than the item we are looking for.

● If so, then Line 07 sets the index, one to the right of this position, as the new start.

● Line 08 checks to see if the element in the array at the midpoint is less than the item we are looking for.

● If so, then Line 09 sets the index, one to the left of this position, as the new end .

● Line 10 checks if the item in the array and the item we are looking for are the same.

● If so, then Line 11 returns true and the function exits.

● If either Line 06 or Line 08 are true, the while LOOP repeats with either the new start or end values.

● Line 14: By default, if the value is not found, false is returned.

9781510484160.indb 189 27/05/20 7:22 PM

190

G
lo

ss
ar

y

GLOSSARY

Abstraction Removing unnecessary or irrelevant detail from a
problem.

Access rights The permissions that a user on a computer
system has to view, write, modify and delete files, change
configurations, and add or remove applications. Different types of
users may have different permissions.

Accumulator (ACC) Stores the results of calculations carried
out by the ALU.

Algorithm A sequence of instructions.

Algorithmic thinking Breaking the solution to a problem
into a series of decisions and instructions that a computer can
implement.

Analogue Continuously changing signals.

AND gate An AND gate output is 1 only if the two inputs are
also both 1.

Anticipating misuse Considering what might happen if users
behave in unexpected ways.

Anti-malware software Software installed on a computer
system to protect it against malware and unauthorised access.

Application software The programs used to carry out
different tasks on a computer, such as word processors, media
players and browsers.

Arithmetic Logic Unit (ALU) The component of a CPU that
performs arithmetic and logical operations.

Arithmetic operators Such as +, −, *, / etc. – used to perform
mathematical operations.

Array A series of items of data that are grouped together under
one identifying name or label. 1D arrays label each item of data
using one index number. 2D arrays label each item of data using
two index numbers.

ASCII A 7-bit code to represent a set of characters available to a
computer.

Assignment Variables and constants are assigned values using
the ‘=‘ operator.

Authentication Establishing a user’s identity.

Bandwidth The amount of data that can be transferred through
a specific connection in a given amount of time, measured in bits
per second.

Binary A number system based on 2, using the digits 0 and 1 only.

Binary code A coding system using the binary digits 0 and 1 to
represent a letter, digit, or other character in a computer or other
electronic device.

Binary shift Moving the binary digits one place to the left
multiplies the number by 2, one place to the right divides the
number by 2.

Bit (b) A binary digit, 0 or 1, symbol b.

Bit depth The number of bits used to store each sound sample.

Boolean conditions Conditions that can evaluate to either
True or False.

Boolean operators Such as AND, OR, NOT, used to compare
multiple conditions.

Boundary test data Values that sit at the very end of the
expected range.

Brute force attack An attempt to gain access to a system
using repeated login attempts.

Buffering The use of a reserved area of memory to hold data
until it is needed; for example, when streaming audio from the
internet a certain amount of data is downloaded before the music
starts to play.

Byte (B) A group of 8 bits, symbol B

Cache memory A small area of memory that can be accessed
quickly. Used to store commonly used instructions or data.

Casting Converting one data type to another.

Central Processing Unit (CPU) A collection of billions of
electronic switches that process data, execute instructions and
control the operation of the computer.

Character A single item from the computer character set, for
example ‘h’, ‘?’.

Character set The complete set of characters available to a
computer.

Client–server networking A network model where a server
provides resources and services to one or more client computers.

Clock speed The number of cycles per second measured in Hz.

Closing (files) External files need to be closed by a computer
program once they are finished with, using the close() command
in OCR Exam Reference Language.

Cloud Storage, services and applications that exist on the internet.

Colour depth The number of bits used for each pixel.

Command line interface (CLI) An interface in which the
user has to type in all of the commands via a keyboard.

Commenting Lines of code written for programmers to
understand. They are ignored by the computer when the program
is run but can make code much easier to understand.

9781510484160.indb 190 27/05/20 7:22 PM

191

G
lo

ss
ar

y

Comparison operators Such as >, <, ==, etc., used to
compare values.

Compiler A translator that decodes all of the lines of code in a
high-level language to produce an executable file which can then
be run by the computer. Programs only need compiling once.

Concatenate Joining multiple strings together.

Condition-controlled iteration/loops Loop until a
particular condition is met, for example WHILE loops.

Constants A label for an area of memory that stores a value that
does not change during the execution of a program.

Control unit (CU) A component of a CPU that coordinates the
activity of the CPU.

Count-controlled iteration/loops Loop for a specified
number of times, for example FOR loops.

Culture The ideas, customs and social behaviour of a particular
group or society.

Data interception and theft The unauthorised taking of
computer-based information. This can be achieved by routing the
data to a different destination, or using packet sniffing software to
intercept wireless transmissions.

Debuggers A feature of IDEs that help programmers to work
through lines of code to check how their program works and find
errors.

Decomposition Breaking a problem into sub-problems.

Defensive design Writing a program that foresees potential
problems and accounts for them accordingly.

Defragmentation The process of grouping together fragments
of the same file and free space on a hard disk drive.

Denary A number system based on 10, using digits 0–9.

Denial of service (DoS) An attempt to bring down a website
or computer system by overloading the server so that it cannot
respond to genuine requests.

Device drivers Software that enables an operating system to
communicate with peripheral devices.

Domain name Part of a network address that identifies it as
belonging to a specific domain, e.g. gov.uk.

Domain Name Server (DNS) A worldwide network of
servers that translate memorable domain names for websites into
IP addresses.

Editor The part of an IDE where code can be entered.

Embedded system A computer system that forms part of an
electronic device.

Encrypting The process of encoding a message or information
so that only authorised persons can access and understand it.

Environmental Effects relating to the natural world and the
impact of human activity on it.

Erroneous test data Values that are of the wrong type, for
example a string when the value should have been an integer.

Error diagnostics A feature of IDEs that will pinpoint where
certain errors occur.

Ethernet A protocol used to connect devices in a LAN over a
wired connection.

Ethics Moral principles that govern a person’s behaviour.

Exponent An operator (such as)̂ that raises one number to the
power of another, for example 2^2 = 4.

Fetch-Execute cycle The basic operation of the CPU. It
continually fetches, decodes and executes instructions stored in
memory.

Field names The label given to each data field in a record.

File management The process by which the OS keeps track
of the physical location of files and folders in secondary storage,
whilst allowing the user to organise and find data using a folder
and file structure.

File permissions Permissions that control the ability of a user
to view, write, modify and delete files.

File Transfer Protocol (FTP) A protocol for transferring files
over the internet.

Final testing Testing the whole complete program.

Firewall Software and/or hardware that inspects and controls all
inbound and outbound network traffic.

Flowchart A visual way of representing inputs, processes and
outputs of an algorithm.

Functions A subprogram that returns a value to the main
program.

Grammatical rules Another name for a syntax error.

Graphical user interface (GUI) An interface where small
icons that represent the files and devices on a computer can be
used by clicking, dragging or touching them.

Hard disk drives (HDDs) A non-volatile storage device.

Hexadecimal A number system based on 16, using digits 0–9
and A–F to represent the denary values 0–15.

High-level language A programming language which
is written using English-like statements, that are easier for
programmers to work with. High level languages must be
translated into machine code before a computer can run them,
such as Python, Java, C and Visual Basic.

Hypertext Transfer Protocol (HTTP) A protocol used to
transfer data between a web browser and web servers.

Hypertext Transfer Protocol Secure (HTTPS) A secure
version of HTTP that adds Secure Socket Layer (SSL) encryption to
the data.

Identifier Another word for the name of a variable or constant.

Indentation Used to make code structure clearer; an essential
part of the syntax in Python.

Input validation Limiting the kind of data a user can input, to
help minimise errors.

9781510484160.indb 191 27/05/20 7:22 PM

http://gov.uk

192

G
lo

ss
ar

y

Input–Process–Output Problems and algorithms can be
broken down into Input–Process–Output.

Integers Whole numbers, for example 432.

Integrated development environment (IDE) A piece of
software that provides all the tools necessary to develop programs
in a particular language.

Internet A global network of networks that connects computer
systems together across the world.

Internet Message Access Protocol (IMAP) A protocol
for accessing email messages on a mail server without having to
download them to your device.

Internet Protocol (IP) A set of rules for sending and receiving
data across the internet.

Internet Service Provider (ISP) A company that provides
access to the internet.

Interpreter A translator that decodes one line of code of high-
level language and then runs it before moving on to the next line.
Programs need to be interpreted each time they are run.

Invalid test data Values that are outside the expected range.

IP address A unique address that identifies a device on the
internet, or on a local network.

Iteration Repetition of sections of code.

Iterative testing Testing each standalone part of a program
separately.

Language (programming) A set of instructions, written
according to particular rules, that a computer can execute to
perform a particular task.

Layers A way of separating the different activities involved in
communication over the internet.

Least significant bit (LSB) The smallest place value in a number.

Legal Actions permitted or denied by force of law.

Licence An official document giving permission to use
something.

Local area network (LAN) A network of computers in a
small geographic area, such as a single building.

Logic errors Something that causes the program to behave in
an unexpected way.

Looping Another name for iteration.

Lossless compression Compression technique that does not
lose any of the original data and the original file can be recovered.

Lossy compression Compression technique that removes
some of the original data. The original cannot be recovered.

Low-level language A programming language whose lines of
code directly correspond to the CPU’s hardware processes. This
means it has little or no abstraction, for example machine code,
assembly language.

Magnetic storage Storage medium using magnetism to store
data.

Maintainability Making code easier to understand and modify.

Malware Software programs designed to cause damage to a
computer system or steal information. It is short for ‘malicious
software’.

Media Access Control (MAC) address A number
programmed into the network interface controller (NIC) that
uniquely identifies each device on a network.

Memory address register (MAR) Stores the address of the
location in memory for data to be fetched from or sent to.

Memory data register (MDR) Stores data fetched from or to
be sent to memory.

Memory management The process in which the operating
system assigns blocks of memory to programs that are running in
order to optimise system performance.

Mesh network topology A network arrangement where
all devices are connected, either directly or indirectly, without a
central switch.

Metadata Additional information stored with data to enable the
computer to recreate the original image/sound/document from
the data.

Module A standalone section of a program.

Modulus (MOD) An operator that returns the remainder after
a division, for example 11 MOD 2 = 1.

Most significant bit (MSB) The largest place value in a number.

Multitasking The way in which an OS enables several programs
to run side by side.

Naming conventions The way in which variable and constant
identifiers are chosen.

Network interface controller/card (NIC) A component
that enables a device to connect to a network using a wired or
wireless connection.

Network performance How quickly data is transmitted
through a network.

Nibble A group of 4 bits, half a byte.

Normal test data Values that sit within the expected range.

NOT gate A NOT gate output reverses the input.

Opening (files) External files need to be opened by a computer
program first, using the open() command in OCR Exam Reference
Language.

Open-source software Software whose source code is
available for anyone to use or modify.

Operating systems Software that communicates with the
hardware and allows other programs to run.

Operator precedence The order in which operations are
carried out – BIDMAS from mathematics.

Operators Symbols or words in a program that are reserved for
particular actions.

9781510484160.indb 192 27/05/20 7:22 PM

193

G
lo

ss
ar

y

Optical storage Storage devices that use laser light to read and
write data.

OR gate An OR gate output is 1 if one or the other, or both, of
the two inputs are 1.

Overflow error When a number becomes too large to store in
the number of bits allocated, it is said to ‘overflow’ and some bits
are lost.

Parameters Values that a main program sends to subprograms
for them to use.

Passwords A memorised set of characters used to confirm the
identity of a user.

Peer-to-peer networking A network model where all
computers are connected to each other and files can be shared
without the need for a central server.

Penetration testing Testing a computer network for
vulnerabilities that an attacker could exploit. It is an authorised
activity also known as ethical hacking.

Peripheral management The process in which the OS
controls peripheral devices such as disk drives and printers using
programs called drivers.

Physical security Security measures to protect computer
systems from physical actions and events such as fire, flood,
natural disasters, theft and vandalism.

Pixel The smallest element of an image. Pixels are the dots that
make the image on the screen.

Post Office Protocol (POP) A protocol for downloading
email messages from a mail server to the user’s device.

Prefixes: kilobyte (KB), megabyte (MB), gigabyte
(GB), petabyte (PB) Naming convention based on multiples
of 1000.

Pre-requisite (for algorithm) Some search algorithms may
require the data to be already sorted – this is known as a pre-
requisite for that algorithm.

Primary storage Storage for data that the CPU needs to access
quickly.

Procedures A subprogram that does not return a value to the
main program.

Processor cores Multiple processor cores used to process
instructions simultaneously.

Program counter (PC) Stores the address of the next
instruction to be processed.

Proprietary software Software whose source code is owned
and protected by the developer. It is illegal to modify such code
and a licence is required to use it.

Protocols A set of rules for transmitting data between
electronic devices.

Pseudocode Similar to a high-level programming language but
without strict syntax rules.

Quotient (DIV) An operator that returns the whole number
after a division, for example 11 DIV 2 = 5.

Random access memory (RAM) The main memory
of a computer that stores data, applications and the operating
system while in use. When the power is turned off, RAM loses its data.

Random numbers A number returned by a progam that
cannot be predicted in advance. A series of random numbers
would not display any patterns at all.

Read and write Data can be both read and written by the
computer.

Reading (files) External files can read into a computer program
once they have been opened, using the readLine() command in
OCR Exam Reference Language.

Read-only Data cannot be written by the computer.

Real numbers Numbers with a decimal point, for example 4.0,
302.81. Also known as float numbers.

Record A series of data fields.

Refining algorithms Making changes to programs to correct
issues discovered through testing.

Registers Very small memory locations within the CPU that
temporarily store data and can be accessed very quickly.

Resolution The number of pixels of dots per unit used in an
image, for example DPI (dots per inch).

Read-only memory (ROM) Used to store data and programs
to initialise a computer system.

Run-time environment The part of an IDE where code can be
run.

Sample rate The number of times a sound is sampled per
second, measured in Hz.

Searching algorithm: linear search, binary search
Different algorithms that can search a list of data.

Secondary storage Non-volatile storage for files and
programs.

Secure socket layer A protocol for securing connections
between web clients.

Selection The decision-making process in a program.

Sequence Execution of statements in a program one after
another.

Service Set Identifier (SSID) The name of the wireless
network broadcast by the access point.

Simple Mail Transfer Protocol (SMTP) A protocol used
to send emails from an email client, such as Outlook, to a mail
server.

Slicing Extracting characters or sub-strings from a string.

Social engineering Methods used to trick people into
divulging sensitive or confidential information.

Solid-state drives (SSDs) A non-volatile storage device
using solid state storage.

9781510484160.indb 193 27/05/20 7:22 PM

194

G
lo

ss
ar

y

Solid-state storage Storage device using electrical transistors
to store data.

Sorting algorithm: bubble sort, insertion sort, merge
sort Different algorithms that can sort a list of unordered data.

SQL commands: SELECT, FROM, WHERE Used to
interrogate databases.

SQL injection A method of attacking databases by inserting
malicious SQL statements into entry fields in order to access
resources or make changes to sensitive data.

Standards A set of agreed rules and definitions that govern all
aspects of computing.

Star network topology A network arrangement where each
computer or client is connected to a central point, usually a
switch or hub.

String A collection of items from the computer character set, for
example ‘hello’.

Structure diagram A visual way of representing sub-problems.

Structured Query Language (SQL) A language used to
access data stored in a database.

Subprograms General name for smaller standalone sections of
code that can be called by the main program.

Syntax errors Something that breaks the grammatical rules of
the programming language.

Systems software The files and programs that make up the
operating system of a computer.

TCP/IP A set of protocols for sending data over the internet
that specifies how data should be broken into packets, addressed,
transmitted, routed and received at its destination.

Terminal testing Testing the whole complete program – the
same as final testing.

Test data Values that are used to check that a program behaves
correctly.

Test plan A list of test data, expected and actual results.

Testing Checking that a program does what it should for every
possible input and output.

Trace table Records the values of variables and outputs for each
line of code, used when checking a program to make sure it is
correct.

Translator A program that decodes a high-level language into
machine code. There are two types of translators: compilers and
interpreters.

Transmission media The media used to transmit data on a
network, cables or radio waves.

Truth table A table listing all possible inputs and outputs for a
logic circuit.

Two-factor authentication Establishing a user's identity using
two different methods, such as a password and biometrics.

Unicode A character set using code pages and 16/32 bits to
represent a range of language symbols. There are several billion
possible character codes available to Unicode.

Uniform Resource Locator (URL) The address of a specific
webpage on the internet. It includes the protocol used to access
the location and the IP address.

User interface The way in which a person controls a software
application or hardware device.

User management The use of separate login accounts
for different users, whose access to various resources such as
applications, devices, storage and networks can be managed by an
administrator.

Variables A label for an area of memory that stores a value that
can change during execution of a program.

Virtual memory A section of the hard drive used as if it were
RAM to supplement the amount of main memory available to the
computer.

Volatile and non-volatile Volatile means data is lost when the
power is removed. Non-volatile memory retains data even when
the power is turned off.

Von Neumann architecture The most common
organisation of computer components, where instructions and
data are stored in the same place.

Web server A computer system that hosts websites.

Wide area network (WAN) A network of computers that
spans a large geographic area, often between cities or even across
continents.

Wi-Fi A set of rules defining how network devices can
communicate using radio waves.

Windows, Icons, Menus and Pointers (WIMP) An interface
where applications are shown in windows, programs and files are
represented by icons, menus allow the user to access features and
options, and interaction is provided by moving a pointer.

Wireless access point (WAP) A device that allows devices
to connect to a network using Wi-Fi.

Writing (files) External files can be written to by a computer
program once they have been opened, using the writeLine(x)
command in OCR Exam Reference Language.

9781510484160.indb 194 27/05/20 7:22 PM

195

Kn
ow

le
dg

e
ch

ec
k

an
sw

er
s

ANSWERS

Computer systems

1.1 System architecture
1 To process data, carry out instructions and control the

components of the computer.
2 The processor fetches instructions from memory.

• The address of the next instruction is copied from
the program counter (PC) and placed in the memory
address register (MAR).

• Data is fetched from this location stored in MAR and
placed in the memory data register (MDR).

• PC is incremented to point at the next instruction.
 The processor decodes the instruction in MDR to see

what to do.
 The processor then executes them:

• it performs a calculation and stores the result in the
Arithmetic Logic Unit (ALU) OR

• it changes the value in the PC to point to another
instruction to be fetched next.

3 The location in memory where the MDR needs to fetch
data from or send data to.

4 To store any data or instructions fetched from memory
or any data that is to be transferred to and stored in
memory.

5 It stores the address of the next instruction to be
processed.

6 Any two from arithmetic operations (add, subtract,
divide, multiply), logical operations (AND, OR, NOT) or
binary shift.

7 A processor with four processor cores (able to deal with
four simultaneous processes).

8 The clock speed is 2.3 GHz. (It is able to carry out 2.3
billion processes per second.)

9 • It is used to hold data that needs to be accessed very
quickly.

• It sits between the CPU and main memory.
• It is faster than accessing main memory.
• CPU looks to cache for necessary data or instruction.
• If the data is not in cache, it is found in main memory

then transferred to cache.

10 • Clock speed determines how many operations per
second.

• Cache memory holds frequently required data so
more cache less time accessing main memory.

• More cores allow more processes to complete
simultaneously, more cores more speed.

11 ROM is non-volatile and does not require power to
maintain its contents. It holds data and instructions
operate the device. RAM is required to store user
selections or any output generated by the device.

12 • Input: User selection for time, power level, program.
• Output: Display of user selections, timer countdown,

‘ping’.
13 There are many examples including: washing machines,

dishwashers, microwaves, set top boxes, telephones,
televisions, home security, water meters, energy smart
meters, home security or heating monitoring systems,
missile guidance, vehicle management, CAM, digital
cameras and portable entertainment devices. (There are
several other examples.)

 Justification is based on the device selected but can
include:
• power requirements, for example battery operated

devices
• size, for example in portable devices
• rugged, for example in missiles or car engines
• low cost for domestic devices
• dedicated software – limited need for user input and

output, limited range of programs/options.

1.2 Memory and storage
1 • RAM is volatile, meaning it needs electrical power

to operate.
• Any data stored in RAM is lost when the power is

turned off.
• ROM is non-volatile memory which means it does

not require power to maintain its contents.
• ROM is read-only. This means that the data stored

in ROM is fixed and cannot be overwritten once it is
created.

2 The operating system, applications that are running and
any associated data while the computer is on and in use.

9781510484160.indb 195 27/05/20 7:22 PM

196

KN
O

W
LE

D
G

E
CH

EC
K

A
N

SW
ER

S

3 The instructions and data needed to get the system up
and running and ready to load the operating system
from secondary storage.

4 An area of secondary storage used to temporarily store
data from RAM.

 If a computer is processing large amounts of data,
there may be insufficient RAM to hold them all. In this
case, the computer can allocate a section of secondary
storage to temporarily act like RAM.

5 There is a delay when transferring data from secondary
storage back into RAM. A computer with more RAM
will need less virtual memory, reducing the number of
data transfers between RAM and secondary storage
and therefore delivering improved performance.

6 To store various other files on our computers so that
they are available the next time we switch on the
computer.

7 The operating system, data, images, programs, documents.
8 • Fast data access times due to lower latency times

because there are no moving parts.
• Lower power requirements and do not generate any

heat or noise.
• SSDs do not fragment data.
• Light and small with low power requirements making

them useful for portable devices.
• Robust because they have no moving parts.

9 • Lower cost per GB of storage.
• Higher capacities available for large storage

requirements.
10 Blu-Ray
11 • Capacity: How much data does it need to store?

• Speed: How quickly does the data need to be
accessed?

• Portability: Does the device or media need to be
transported?

• If so, the size and weight are important.
• Durability: Will the device or media be used in a

hostile environment?
• If so, the media must be resistant to external shocks

or extreme conditions.
• Reliability: Does it need to be used repeatedly

without failing?
• Cost: What is the cost per unit of storage related to

the value of the data?
12 4 500 000 KB
13 32 000 GB
14 200 * 6 = 1200 MB
 20 * 6 = 120 MB
 Total 1320 MB or 1.32 GB

15 40 * 100 = 4000 KB or 4 MB
 15 * 6 = 90 MB
 Total 94 MB which will fit comfortably on a CD but

most devices do not contain a CD drive and the most
appropriate device would be a USB flash drive.

16 (a) 9
(b) 29
(c) 49
(d) 140
(e) 219
(f) 252

17 (a) 10100
(b) 101110
(c) 1001011
(d) 1100010
(e) 10010011
(f) 11010101

18 10010
19 10100
20 1011010
21 1010011
22 10111101
23 11101011
24 101110001 – we get a ninth bit so the number has

overflowed
25 11 denary 3 1100 denary 12 divided by 4
26 1101100 denary 108 11010 denary 54 multiplied by 2
27 101000 denary 40 101 denary 5 multiplied by 8
28 110 denary 6 110000 denary 48 divided by 8
29 1110000 denary 112 111 denary 7 multiplied by 16
30 1000 denary 8 10000000 denary 128 divided by 16
31 1100110000 more than 8 bits, we have overflow
32 101 denary 5 10111 denary 23 divided by 4, but we have

lost accuracy
33 (a) 34

(b) 43
(c) A5
(d) BF
(e) C9

34 (a) 18
(b) 88
(c) 93
(d) 174
(e) 202

35 (a) 9C
(b) 33
(c) FF

9781510484160.indb 196 27/05/20 7:22 PM

197

Kn
ow

le
dg

e
ch

ec
k

an
sw

er
s

(d) 39
(e) 4E

36 (a) 10010101
(b) 10101011
(c) 11101
(d) 10100011
(e) 1010110
37 The higher the resolution, the larger the file

needed to store the image.
38 The higher the resolution, the better the image

quality.
39 The number of bits per pixel.
40 It reduces the number of colours that can be

displayed and reduces the quality of the image.
41 24 or 16
42 The number of bits used to store each sample of

music.
43 The higher the sample rate, the closer the sound

is to the original but the larger the file needed to
store the data.

44 Reducing the size of a file.
45 With lossy compression some data is lost and the

original file cannot be recovered. With lossless
compression no data is lost and the original data is
available.

46 With a computer program all the data must be
available otherwise the program will not work.

47 Image and video files can be very large and would
take a significant amount of time to send if not
compressed. The data in a video or large high-
resolution image may exceed the file size for an
email attachment.

1.3 Computer networks,
connections and protocols
1 A LAN is a network in a small geographic area, such as

a home, a school, an office or a group of buildings on a
single site. The hardware is usually owned and main-
tained by the organisation that uses it. It will often use
both wired and wireless connections.

2 A LAN is a network covering a small geographic area; a
WAN covers a wide geographic area.

 The networking hardware in a LAN is usually owned
and maintained by the organisation that uses it. The
connections used in a WAN are usually hired or leased
from a telecommunications company.

3 Bandwidth is the amount of data that can be
transmitted over a network in a given period of time. It
is usually measured in bits per second.

4 • The number of users. A large number of users can
cause network congestion and slow the network.

• The type of transmission media used. Wired
connections are generally faster and more reliable
than wireless connections.

• Error rate. There may be transmission errors due to
interference from other wireless networks nearby,
or other electronic devices, or due to a weak Wi-Fi
signal. Errors mean that packets have to be re-sent
which increases data traffic.

5 In a client-server network, the computers, known as
clients, are connected to a central server. The clients
request the services and resources that they require
from the server. The server processes this request and
sends a response back to the client.

6 Advantages:
• Users files can be stored on the server so they can be

accessed from any connected client.
• Backups can be managed centrally, ensuring that all

files are included.
• Software and security updates can be managed

centrally, without the need to update each computer
individually.

• User accounts can be managed centrally and access
levels can be controlled for different categories of
user, which helps to keep the network secure.

 Disadvantages:
• If the server becomes unavailable then users will not

be able to access their files.
• Severs can become overwhelmed by too many

requests, preventing clients from accessing their services.
• Server hardware is more expensive than ordinary

computers, so there is an increased up-front cost of
setting up the network.

• A cyber-attack only needs to focus on the server, not
on each individual client.

7 All of the computers, called peers, have equal status
and are connected directly without the use of a central
server. Each computer stores its own files. Peers can
be configured so that specified files and folders can be
accessed by other peers on the network.

8 Advantages:
• P2P networks are easy to set-up as they do not

require expensive or dedicated hardware.
• If one device fails, the rest of the network will still

continue to operate normally.
 Disadvantages:

• There is no central management or maintenance, so
software and security updates have to be carried out
individually on each peer device.

9781510484160.indb 197 27/05/20 7:22 PM

198

KN
O

W
LE

D
G

E
CH

EC
K

A
N

SW
ER

S

• There is no centralised backup of files, so each peer
needs to be backed up separately.

• Files are duplicated when they are transferred
between devices, which can lead to multiple versions
of the same document existing.

9 The NIC enables a device to connect to a LAN. It
formats the data to be sent using the correct protocol,
and received incoming signals.

10 A desktop computer may be connected to a home
network using ethernet cables or wirelessly using W-Fi.

11 Individual devices are uniquely identified on a LAN
using their MAC address.

12 Wireless access point (WAP)
13 The router connects the home network to the internet.
14 The IP address is used to uniquely identify devices on

the internet so that data can be sent from one device
to another.

15 A user types the domain name for a website into their
browser. The browser sends a request to a DNS server
to ask for the matching IP address. The DNS server
returns the appropriate IP address to the browser. The
browser then sends a request for the webpage to the IP
address.

16 Cloud computing refers to the use of storage, services
and applications that are accessed via the internet
rather than being stored locally on a device.

17 • File storage, such as DropBox, iCloud Drive.
• Applications, such as Office 365, Google Docs.

18 • An internet connection is required to access the data.
• There is little control over the security of the data or

where it is stored.
• Terms and process of data storage can be changed

with little notice.
• Fees may become expensive in the long term.

19 The way in which devices are arranged and connected
together.

20 Each computer or client is connected individually to a
central point, usually a switch or hub.

21 Advantages:
• There is no single point of failure.
• Data can be transmitted from several devices

simultaneously, allowing for high volumes of data
traffic.

 Disadvantages:
• Wired mesh networks tend to be too expensive and

impractical to set up due to the many connections
required.

• They require a lot of maintenance due to the many
connections.

22 A set of rules for how devices communicate and how
data is transmitted across a network.

23 Ethernet
24 2.4 GHz and 5 GHz
25 Bluetooth

• The data only needs to travel over a short distance.
• It is quick to pair devices. Data communication is

more secure than open Wi-Fi.
26 An IP address is unique and identifies the location of a

device on a network.
27 32 bits (4 × 8 bits)
28 Eight sets of four hexadecimal numbers separated by

colons. This requires 128 bits.
29 A MAC address uniquely identifies each device that is

connected to a network.
30 Standards allow different hardware and software

manufacturers to make components and programs that
are compatible and will work with each other. Without
the use of standards, only hardware and software made
by the company could be used together.

31 File Transfer Protocol (FTP)
32 Hypertext Transfer Protocol Secure (HTTPS)
33 It is used to send email from a device to the email

server, and to send emails between servers.
34 • TCP stands for Transmission Control Protocol. It splits

data in packets and adds the header, which includes
the packet number, number of packets and checksum.

• IP stands for Internet Protocol. This adds the source
and destination IP addresses to the packet.

35 The different activities involved in sending data are
organised into layers, with each layer being concerned
with a different task. The relevant protocols are assigned
to each layer.

36 It breaks down the process into smaller, more
manageable parts. Each layer can be developed or
changed without affecting the other layers. Software
and hardware developers only have to understand how
one layer works when developing new products. It is
helpful when trying to identify and correct networking
errors and problems as the issue can be narrowed down
to one layer in the process.

1.4 Network security
1 Virus = Malware that is spread through infected files
 Spyware = Malware that comes packaged with other

software
 Worm = Malware that is self-replicating and spreads via

email
 Trojan = Malware disguised as legitimate software

9781510484160.indb 198 27/05/20 7:22 PM

199

Kn
ow

le
dg

e
ch

ec
k

an
sw

er
s

2 Pharming is where users are directed to a fake website in
order to obtain their login details.

3 Pretexting involves a criminal inventing a scenario to
persuade a victim to divulge information that they
would normally keep secret.

4 This is where a hacker attempts to crack a password by
systematically trying different combinations of letters
and numbers until the correct one is found.

5 • Packet sniffing may be used to read the contents of
data packets. This may be done by manipulating the
network switch to route all data to a sniffing device
which will then send them on to their intended
destination once the data has been captured.
Alternatively, it may be done by intercepting data
being sent on wireless networks.

• A man-in-the-middle attack may be used by setting
up a fake Wi-Fi hotspot and luring people to use it.
All data packets can then be captured and sniffed.

6 The details entered into the login fields on an online
form includes SQL code, which enables hackers to
circumvent the requirement to enter legitimate login
details and allows them to gain access to the database.

7 • It performs real-time scans of incoming network
traffic to detect if they are infected with a virus.

• It performs periodic scans of the whole system
looking for malicious applications.

• If it detected a virus or other malware, it is
quarantined to prevent it from running and allows
users to attempt to clean or remove it.

8 • Malware
• Denial of Service (DoS) attacks

9 Wireless networks are vulnerable to data packets being
intercepted and read. Using encryption means that the
data cannot be read by unauthorised persons, even if
they manage to access the data.

1.5 Systems software
1 • Provides a user interface.

• Controls the use of the RAM.
• Shares processor time between different programs

and processes.
• Controls peripheral devices.
• Controls who can access the computer and what

resources they can use.
• File management to allow users to organise their

work into folders and subfolders.
2 It uses small icons to represent the files, devices and

applications and allows the user to interact by clicking,
dragging or touching them.

3 Command line interface (CLI)
4 The memory manager controls where a program and its

data will be stored in RAM. When a program is finished
or the data is no longer needed, it frees up the space for
re-use.

5 These are programs which act as a translator to allow
the CPU and devices to communicate correctly.

6 It makes it easier for users to organise and find data in a
systematic way. Files can be created, moved, re-named,
saved or deleted, and the file manager keeps track of
where they are physically located in secondary storage.

7 Programs that are not essential to the operation of
the computer, but which are involved in maintaining a
computer system.

8 • Encryption software
• Defragmentation
• Data compression

9 To protect data from unauthorised access. The data is
scrambled into a form that cannot be understood if it is
accessed by unauthorised users.

10 The performance of a system is slowed as the disk
needs to be accessed more frequently to read all of the
data.

11 • To reduce the size of files so that they take up less
storage space.

• To reduce the size of files so that they can be
transmitted more quickly over the internet.

1.6 Ethical, legal, cultural and
environmental impacts of
digital technology
1 For example:

• CCTV on the streets and in public places, private
homes with CCTV, corporate buildings with CCTV,
and the workplace

• mobile phones can be tracked and are tracked by
various apps

• online activity in the workplace and by various
websites, for example to monitor searches to target
advertising

• online monitoring of social media activity to provide
a profile for organisations.

2 For example:
• Social media posts are viewable by a wide audience

often well beyond friends and acquaintances and
may influence how the individual is seen by potential
employers or members of specific groups or the
general public.

9781510484160.indb 199 27/05/20 7:22 PM

200

KN
O

W
LE

D
G

E
CH

EC
K

A
N

SW
ER

S

• Families may see posts intended for close friends;
employers may see unguarded moments from social
activities.

3 For example:
• sharing recent activities with friends
• keeping friends up to date with what you like and are

doing
• unguarded moments available to employers
• comments may solicit abuse, trolling.

4 For example:
• targeting advertising more effectively
• promoting special offers.

 For example, searches for shoes may solicit social media
advertising for various shoe brands or online retailers
can provide better targeted promotions.

5 For example:
• use of electricity by data centres
• use of rare substances within the technology

depleting resources
• energy used to manufacture devices
• toxic materials used and their disposal.

6 For example:
• work rate and work patterns
• time spent on breaks
• online activities
• work quality.

7 Yes:
• The activity may reflect on the company.
• It may identify opinions and activities of the

individual that are incompatible with the company.
 No:

• They are private posts from private computers.
• The individual has the right to their own opinions

and the right to free speech.
8 • Lawfulness, fairness and transparency: There must be

valid reasons for collecting and using personal data.
• Purpose limitation: The purpose for processing the

data must be clear from the start.
• Data minimisation: Data being processed must be

adequate, relevant and limited to what is necessary.
• Accuracy: Steps must be taken to ensure data is

accurate, up to date and not misleading.
• Storage limitation: Data must not be kept for longer

than necessary.
• Security: There must be adequate security measures

in place to protect the data held.
• Accountability: The data holder must take

responsibility for how the data is used and for
compliance.

9 This act makes it a criminal offence to access or modify
computer material and includes hacking and the
distribution of malware.

10 Proprietary software:
• Written by organisations trying to make a profit.
• The source code is kept securely and versions of the

software are distributed as executable programs so
that the user is not able to access the source code or
modify it.

• The software is copyright protected, making it illegal
to modify or distribute it.

• It is usually licensed for a fixed number of computer
systems.

• The software is fully tested and supported by the
organisation.

 Open source software:
• Uses a community of developers.
• Software developed under open standards makes

the source code available to everyone.
• Developed and updated by a community of

programmers.
• Can be installed on as many computers as necessary.
• Others can modify the code and distribute it.
• Versions are made available at no or very little cost.
• Relies upon the community for testing and support,

modified versions may not be supported or fully
tested.

11 An organisation that issues licences allows a user to
modify or distribute parts of the software under certain
conditions. Also known as ‘some rights reserved’.

Computational thinking,
algorithms and
programming

2.1 Algorithms
1 (a) Decomposition is breaking a problem down into

smaller sub-problems. (Once each sub-problem
is small and simple enough, it can be tackled
individually.)

(b) Abstraction is removing or hiding unnecessary
details from a problem (so that the important
details can be focussed on or more easily
understood).

(c) Algorithmic thinking is deciding on the order that
instructions are carried out (in order to identify
decisions that need to be made by the computer).

9781510484160.indb 200 27/05/20 7:22 PM

201

Kn
ow

le
dg

e
ch

ec
k

an
sw

er
s

2 Steps may include:
• generating the text for the message
• encryption method
• generating or selecting the key
• encrypting the text
• sending the encrypted text
• sharing the key
• decrypting the text.

3 • The details of the game are removed.
• Players’ details are limited to name.
• Winner and loser are identified without further

details.
• No ranking involved.

4

Line NumOne NumTwo Output Comment
01 8
02 5
04 5 Error prints

smaller number,
should print
NumOne

Or the condition
in line 03 should
be <=

5 It compares pairs of values starting at the beginning of
the list.

 If they are out of order, they are swapped and a flag is
set to say a swap has taken place.

 It repeats checking the list and swapping values that are
out of order until the list is in order and no swaps are
made.

 Pass 1: 6, 2, 5, 8, 9 swap made
 Pass 2: 2, 5, 6, 8, 9 swap made
 Pass 3: 2, 5, 6, 8, 9 no swap list is sorted.
6 Dog, Cat, Mouse, Ant
 Cat, Dog, Mouse, Ant

 Sorted Unsorted
 Cat, Dog, Mouse, Ant

 Sorted Unsorted
 Ant, Cat, Dog, Mouse
7 The list of values is split into individual lists of size 1.
8 It compares each value with 18 in turn until it finds a

match or reaches the end of the list.
9 C
10 It searches through all of the list. If the item is not found,

it declares that it is not in the list.

2.2 Programming
fundamentals
1 A variable is (a memory location) used to store a single

piece of data. This can be changed during the running
of a program.

2 A variable can be changed by the program; a constant
cannot be changed by the program.

3 • Sequence is the execution of statements one after
the other, in order.

• Selection is the construct used to make decisions in a
program.

• Iteration is the construct used to repeat sections of
code. Iteration is commonly called looping.

4 A While loop does something while a condition is met.
A Do loop does something until a condition is met. A
do loop will always run at least once.

5 (a) 11
(b) 21
(c) 4
(d) 2
(e) 4
(f) 4
(g) 4
(h) 44

6 (a) TRUE
(b) TRUE
(c) FALSE
(d) TRUE

7 (a) Integer
(b) Character
(c) Boolean
(d) String
(e) Real
(f) Real

8 (a) 16
(b) ‘Co’
(c) ‘g is fun’
(d) text.right(3)

9 • Surname: string.
• Telephone number: string.
• Membership fee: real.
• Membership paid: Boolean.
• Number of goals scored: integer.

10 (a) Bill 02223334445
 Graham 02232232232
 Harry 01223123123
 Sheila 01212121212

9781510484160.indb 201 27/05/20 7:22 PM

202

KN
O

W
LE

D
G

E
CH

EC
K

A
N

SW
ER

S

(b) SELECT First _ name, Email FROM
Address _ book WHERE Surname =
"Mills"

(c) SELECT * FROM Address _ book
WHERE Email = SJ@home.vid

11 (a) Blueberry
(b) Lime
(c) fruit[1,2]

12 Functions return values to the program; procedures do
not return value to a program.

13 Subprograms
• allow programs to be split up into multiple sections
• make the code easier to read and maintain
• reduce the size of the code
• reuse code without copying and pasting.

2.3 Producing robust
programs
1 Defensive design is where a programmer tries to antic-

ipate ways in which their program could be misused
or fail, and then puts measures in place to stop that
happening.

2 • Using input validation to ensure that only expected
types of input are accepted by the program, such as
only allowing letters for a name, or suitable values for
someone’s age.

• Including authentication systems to establish a
user’s identity before they are allowed to access
the program, such as requiring a username and
password.

3 Two factor authentication requires the use of two
different types of authentication. These are usually
selected from something you know (such as a
password), something you have (such as a code sent to
a mobile phone in your possession), or biometrics (such
as fingerprint scanners). For example, you may be asked
to enter your password and then enter a code sent to
you in a text message.

4 Validation involves checking values against a set of rules
to see if the data is sensible and as expected.

5 • A type check, to make sure that numbers are entered.
• A range check, to make sure that the person is not

over 100.
• The use of drop-down lists so that users can only

select from a pre-set range of values.
6 It is not easy to validate a name because, apart from

checking for any unusual characters, such as %, the
length of someone’s name can vary greatly, and there is
no set range that it would fall into.

7 Maintainability is important as it enables programs to
be read easily, and therefore for errors to be identified
and fixed, or updates and modifications to be made
easily.

8 • The name should relate to the contents being stored
in the variable to help programmers identify their
purpose.

• Variable names should start with a lowercase letter.
9 • Use of indentation.

• Use of sub-programs.
• Use of comments.

10 The second line would be more useful because the
variable names make it clear what data is being used in
the calculation.

11 Destructive testing involves trying to find ways to break
a program and make it fail to ensure that it is fully robust.

12 Testing is used to ensure that a program works as
expected and meets all of the requirements.

13 Iterative testing involves checking each part of the
program as it is developed, whereas final testing is
carried out once the whole program has been written.

14 A logic error will still allow the program to run but will
produce an unexpected result, whereas a syntax error
will stop a program from running in the first place.

15 This would cause a syntax error because FOR is a
keyword and so the program does not make sense and
will not run.

16 This would cause a logic error. The program would still
run, but the result would be incorrect.

17 Normal test data is data that is of the correct type that
you would expect a user to input. It should be accepted
and not cause any errors.

18 Boundary test data is of the correct type and is at the
very edge of what should be accepted, allowing the
program to run without causing errors. Invalid test data
is of the correct type but should not be accepted as it is
not within the expected range.

19 Any appropriate password that is less than eight
characters or more than 15 characters long.

20 Test data Type of test data Expected result
For example, 25

(Any value above 18)

Normal Accepted

18 Boundary Accepted
For example, 17

(Any value below 18)

Invalid Rejected

For example, twenty

(Any value that is not
an integer)

Erroneous Rejected

9781510484160.indb 202 27/05/20 7:22 PM

203

Kn
ow

le
dg

e
ch

ec
k

an
sw

er
s

21 Refining algorithms means improving them, for example
fixing any errors or making the code more efficient.

22 • Errors identified when testing would need to be
fixed.

• Sections of code that are repeated should be made
into sub-programs, or use iteration.

• Poorly named variables would need to be renamed to
something more meaningful

2.4 Boolean logic
1 A B C P

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

2 A B P

0 0 1

0 1 0

1 0 1

1 1 1

3 A B P

0 0 1

0 1 0

1 0 0

1 1 0

4 A B C P

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 0

5 A B C P

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

6

P

A

B

7 A

B
P

C

8

P

A

B

9

P

A

B

C

D

10 (a) (1 1 0 1 1)
(b) (0 0 1 1 0)
(c) (1 0 0 0 0)

11 For example: Cost £1900, no Pool in USA
12

P

A

B

C

9781510484160.indb 203 27/05/20 7:22 PM

204

KN
O

W
LE

D
G

E
CH

EC
K

A
N

SW
ER

S

13 A B P

0 0 0

0 1 1

1 0 0

1 1 0

2.5 Programming languages
and integrated development
environments
1 Any three from Python / C# / C++ / Visual Basic / Ruby

/ Pascal / Fortran / Java / JavaScript or other suitable
alternatives.

2 • They use English-like syntax which makes them
easier for programmers to use.

• They use abstraction to hide the details of the
underlying instructions that need to be completed
by the processor.

3 They enable programs to be run very quickly.
4 • Using an interpreter. This translates and runs the

code one line at a time.
• Using a compiler. This translates the whole program

into machine code and produces an executable file.

5 IDE standards for integrated development environment.
It is software that provides all the tools needed to
develop computer programs.

6 An editor in a word processor allows text to be entered
and saved, and some formatting such as bold or
coloured text can be added manually. An IDE often
supports pretty printing, where variables and key words
are displayed in certain colours, or code is automatically
indented, to make it easier to read and understand.

7 • An inbuilt debugger program will identify syntax
errors within the code when it is run.

• A programmer can step through the program line by
line, to check how the program is running and check
the contents of variables. Breakpoints can be set
which halt the program at a particular point.

8 Either of the following:
• translator
• run-time environment.

9781510484160.indb 204 27/05/20 7:22 PM

205

In
de

x

A
abstraction 106–7, 118, 175
accumulator (ACC) 4, 10
adding binary numbers 24–6, 46–7
algorithmic thinking 106, 118
algorithms 107

flowcharts 109–10, 119–20
Input–Process–Output 108, 118
pseudocode 111, 113, 120
refining 160, 163
searching 116–17, 124
sorting 112–16, 122–3
structure diagrams 108–9, 119
trace tables 111, 121

analogue data 36, 50
AND gates 165, 166, 171
AND and NOT gates 166
AND and OR gates 166–7
AND operator 132, 148
anticipating misuse 152–3, 161
anti-malware software 77–8, 82
applications software 83
Arithmetic Logic Unit (ALU) 3, 10
arithmetic operators 131, 148
arrays 150–1

one-dimensional 141
two-dimensional 141–2

ASCII (American Standard Code for
Information Interchange) 31

extended set 32
assembly language 175
assignment 126, 146
authentication 153, 161
automated decision-making 95
automatic number plate recognition

(ANPR) 97

B
bandwidth 54, 69
batch files 84

binary codes 31
binary numbers 20, 22, 44–5

adding 24–6, 46
conversion to and from denary
numbers 22–4, 45–6
conversion to and from
hexadecimal 30–1, 48–9
overflow errors 26

binary search 116–17, 124
binary shifts 27–8, 47
biometric authentication 79, 153
bit depth
images 35
sound sampling 37, 50
bits 20, 45
black box testing 157
Bluetooth 58, 64, 71
Blu-Ray 18, 43, 44
Boolean conditions 127, 147
Boolean data type 164
Boolean logic 171–2

combining operators 166–7, 172
logic diagrams 165–9
solving real-life problems 170, 173
truth tables 164

Boolean operators 132–3, 148
Boolean variables 134, 149
botnets 75
boundary test data 159, 163
breakpoints 178–9
brute force attacks 75, 78, 79, 82
bubble sort algorithm 112–13, 116, 122
buffering 85, 89
buses 5
bytes 20, 45

C
cables 57
cache memory 3, 6–7, 10, 11
casting 135–6, 149
CCTV cameras 92, 97
CDs 18, 43, 44

censorship 94–5
central processing unit (CPU) 9

components and their function
3–4, 10
performance 6–7, 10–11
purpose of 2
Von Neumann architecture 4–5, 10

channels 63
character sets 31, 49
characters 49, 134–5, 149

ASCII 31–2
binary codes 31
Unicode 32

ciphertext 86
client computers 61
client–server networks 55–6, 69
clients 55
clock speed 6, 10
closing files 138
cloud computing 60, 70
colour depth 35, 50
colours 33–4
command line interfaces (CLIs) 84, 89
comments 156, 162
comparison operators 132, 148
compilers 176–7, 180
compression 39–40, 51, 87–8, 90

lossless 40
lossy 39

computational thinking 106–7, 118
Computer Misuse Act 1990 99, 103
computer networks see networks
computer systems 2
concatenation 137, 149
condition-controlled iteration 130–1, 147
constants 126, 146
control unit (CU) 3, 10
copper wire cables 57
Copyright, Designs and Patents Act

(CDPA) 1988 99, 103
cores, number of 7, 11
count-controlled iteration 129–30, 147
Creative Commons 100, 104
cultural issues 93–5, 101

INDEX

9781510484160.indb 205 27/05/20 7:22 PM

206

D
data capacity calculations 20–1, 45
data collection 94, 97
data compression 39–40, 51, 87–8, 90

lossless 40
lossy 39

data interception and theft 76, 79, 82
data packets 54, 76
Data Protection Act 2018 97–9, 102–3
data searches 139–40, 150
data storage

characters 31–2, 49
compression 39–40, 51
images 33–5, 50
metadata 34
numbers 22–30, 45–9
records 139, 150
sound 36–8, 50–1
units of 19–20, 44–5
see also memory; secondary
storage

data transfer speeds 13
data types 134–5, 148–9

Boolean data 164
casting 135–6

debuggers (error diagnostics) 178–9, 181
decision-making, automated 95
decomposition 106, 118

structure diagrams 108–9
defensive design 161–2

anticipating misuse 152–3
authentication 153
input validation 154
maintainability 155–6
testing 157–60

defragmentation 86–7, 90
denary (decimal) numbers 22

conversion to and from binary
numbers 22–4, 45–6
conversion to and from
hexadecimal 30, 48

denial of service (DoS) attacks 75, 79, 82
destructive testing 157
device drivers 85, 90
discrete data 36
distributed denial of service (DDoS)

attacks 75
DIV operator 131, 148
DNS servers 74
DO UNTIL loops 130–1
Domain Name Server (DNS) 59
domain names 59, 70
drivers 85, 90
DVDs 18, 43, 44

E
editors 178, 181
efficient programs 160
electromagnetic spectrum 58
electronic tagging 97
ELSE statements 128–9
embedded systems 7–8, 11
encapsulation 67
encryption 64, 66, 79, 82, 86, 90
energy use 95
engine management systems 8
ENIAC (Electronic Numerical Integrator

And Computer) 174
environmental issues 95–6, 102
erroneous test data 159, 163
error diagnostics (debuggers) 178–9, 181
errors 158, 162
ethernet 63, 70

advantages and disadvantages
64

ethics 91–3, 101
exponent (̂) operator 131, 148
extended ASCII 32, 49

F
Fetch–Execute cycle 2, 5, 9
fibre-optic cables 57
field names 139, 150
File Allocation Tables (FATs) 85
file handling operations 138–9, 149–50
file management 83, 85, 90
file permissions 85
final (terminal) testing 157, 162
firewalls 78, 82
flash memory 17, 43
floating point numbers 134
flow diagram symbols 110
flowcharts 109–10, 119–20
FOR loops 129–30
fragmentation 17, 86–7, 90
frequency bands 63
FTP (File Transfer Protocol) 66, 71
functions 144, 151

random number generation 145

G
General Data Protection Regulation

(GDPR) 98
graphical user interfaces (GUIs) 83–4, 89

H
hacktivists 75
hard disk drives (HDDs) 15–16, 42, 44
hardware 2, 57–8, 70
headers 66
heuristic analysis 78
hexadecimal (hex) 28, 48–9

conversion to and from binary
numbers 30–1
conversion to and from denary
numbers 28–9

high-level languages 175–6, 180
Hopper, Grace 176
hosts, internet 60
HTTP (Hypertext Transfer Protocol) 66, 71
HTTPS (Hypertext Transfer Protocol

Secure) 66, 71
hubs 58

I
identifiers 125
IF statements 127–9
images 33–4, 50

colour depth and resolution 35
metadata 34

IMAP (Internet Message Access Protocol)
66, 72

impacts of digital technology 91
cultural issues 93–5, 101
environmental issues 95–6, 102
ethical issues 91–3, 101
legal issues 93, 101
privacy issues 96–7, 102

increments 129
indentation 155–6, 162
index values 141
input validation 154, 161
inputs 108, 118, 126, 146
insertion sort algorithm 113–14, 116, 122
integers 134, 148
integrated development environments

(IDEs) 177–9, 181
internet 59–61, 70

censorship 94–5
policing of 93
tracking 97

Internet Protocol (IP) 59, 66, 72
interpreters 176–7, 180
invalid test data 159, 163
IP addresses 59, 64–5, 70, 71, 78
iteration (looping) 129–31, 147

nested loops 141–2
iterative testing 157, 162

IN
D

EX

9781510484160.indb 206 27/05/20 7:22 PM

207

K
keys 79, 86

L
lands 18
latency 17, 49, 54
layers 67–8, 72
least significant bit (LSB) 22
legislation 93, 101, 102–4

Computer Misuse Act 1990 99
Copyright, Designs and Patents
Act 1988 99
Data Protection Act 2018 97–9
software licences 99–100, 103–4

linear search 116, 117, 123
local area networks (LANs) 52–3, 69

client–server networks 55–6
logic diagrams 165–7, 171–2

creation from expressions 168–9
logic errors 158, 162
London Underground map 107
looping (iteration) 129–31, 147

nested loops 141–2
lossless compression 40, 51, 87
lossy compression 39, 51, 87
low-level languages 174–5, 180

M
MAC (Media Access Control) addresses 57,

65, 70, 71, 78
machine code 4, 174–5
magnetic storage 15–16, 42, 44
magnetic tape 16
maintainable programs 155–6, 161
malware 73–4, 79, 81–2

anti-malware software 77–8
man-in-the-middle (MITM) attacks 76
megabits (Mb) 54
megabits per second (Mbps) 54
memory 41–2

cache 3, 6–7
comparison of RAM and ROM 13
in embedded systems 7
random access (RAM) 12–13
read-only (ROM) 13
virtual 14
see also secondary storage

memory address register (MAR) 4, 10
memory data register (MDR) 4, 10
memory management 83, 84–5, 89

merge sort algorithm 114–15, 122–3
mesh network topology 62, 70
metadata 21, 34, 50
microcontrollers 7
mnemonics 175
mobile phone signal tracking 92, 97
modules 157, 162
modulus (MOD) operator 131, 148
most significant bit (MSB) 22
multitasking 85, 89

N
naming conventions 155, 162
natural language interfaces 84
nested loops 141–2
network diagram 58
network interface controller/card (NIC)

57, 70
network performance 69

influencing factors 54
network protocols 66, 70
network topologies 61–2, 70
networks

addresses 64–5, 71
advantages and disadvantages 52
client–server 55–6, 69
encryption 64
hardware 57–8, 70
internet 59–61, 70
layers 67–8, 72
modes of connection 63–4, 70–1
peer-to-peer 56, 69
types of 52–3, 69

nibbles 20, 45
non-volatile memory 41

ROM 13, 41–2
normal test data 159, 162
NOT gates (inverters) 165, 166, 171
NOT operator 133, 148
numbers

binary 20, 22–8
denary (decimal) 22
hexadecimal (hex) 28–30

O
one-dimensional arrays 141, 150
opening files 138, 149
open-source software 99–100, 103–4
operating systems 83, 89–90

file management 85
memory management and
multitasking 84–5

peripheral device management
and drivers 85
user interface 83–4
user management 85

operator precedence 131
operators 126, 148

arithmetic 131
Boolean 132–3
comparison 132
file handling 138–9, 149–50
string manipulation 136–7, 149

optical storage 18, 43
OR gates 165–6, 172
OR operator 132–3, 148
outputs 108, 118, 126, 146
overflow errors 26, 47

P
packet sniffing 76
parameters 143, 151
passwords 78, 153
payloads 66
peer-to-peer (P2P) networks 56, 69
penetration testing 77, 82
peripheral device management 83, 85, 90
pharming 74, 81
phishing 74–5
physical security 79, 82
PINs (personal identification numbers) 75
pits 18
pixelation 35
pixels 33, 50
POP (Post Office Protocol) 66, 71
presence checks 154
pretexting (blagging) 75
pretty printing 178
primary storage 12, 41–2

random access memory (RAM)
12–13
read-only memory (ROM) 13
virtual memory 14

privacy issues 96–7, 102
procedures 143–4, 151
processes 108, 118
processor cores 7, 11
program counter (PC) 4, 10
programming

arrays 141–2
data searches 139–40
data storage 139
data types 134–6
defensive design 152–6, 161–2
file handling 138–9
inputs and outputs 126

In
de

x

9781510484160.indb 207 27/05/20 7:22 PM

208

integrated development
environments (IDEs) 177–9, 181
iteration (looping) 129–31
operators 126, 131–3
random number generation 145
selection 127–9
sequence of instructions 127
string manipulation 136–7
subprograms 142–4
testing 162–3
variables, constants and
assignments 125–6
see also algorithms

programming languages 180
levels of 174–6
translators 176–7

proprietary software 99–100, 103–4
protocols 63, 66, 70, 71

Internet Protocol (IP) 63
pseudocode 111, 113, 120

Q
quotient (DIV) operator 131, 148

R
radio waves 58, 70
random access memory (RAM) 12–13, 41–2
random number generation 145, 151
ransomware 74, 81
reading files 138, 149
read-only memory (ROM) 13, 41–2
real numbers 134, 148
records 139, 150
refining algorithms 163
registers 4, 10
reserved keywords 125
resolution 35, 50
resource use and recycling 95–6
robust programs 152
routers 58, 70
runtime environment 179, 181

S
sample rate 37, 50
sandboxes 78
searching algorithms

binary search 116–17, 124
comparison of 115–17
linear search 116, 123

searching for data 139–40, 150
secondary storage 15, 42–3

capacity and cost 18
choice of 18–19, 43–4
magnetic 15–16
optical 18
portability, durability and
reliability 19
solid-state 17
speeds 19

security measures 77–9, 82
security threats 73–6, 81–2
selection 127–9, 147
sequence of instructions 127, 147
servers 55, 74

web servers 60
Service Set Identifier (SSID) 58
shell scripts 84
shouldering (shoulder surfing) 75
SMTP (Simple Mail Transfer Protocol) 66,

72
social engineering 74–5, 79, 81
social media 93

privacy issues 96–7
software 2

anti-malware 77–8, 82
software licences 99–100, 103–4
solid-state drives (SSDs) 17, 43, 44, 87
solid-state storage 17, 43
sorting algorithms

bubble sort 112–13, 122
comparison of 115
insertion sort 113–14, 122
merge sort 114–15, 122–3

sound sampling and storage 36–8, 50–1
spyware 74, 81
SQL injection 76, 79, 82
SSL (Secure Socket Layer) encryption 66
stakeholders 92
standards 65, 71
star network topology 61, 70
storage see data storage; memory;

secondary storage
string manipulation 136–7, 149
string slicing 137, 149
strings 135, 149
structure diagrams 108–9, 119
Structured Query Language (SQL) 76,

139–40, 150
subprograms (subroutines) 110, 142–3, 151,

155, 161
functions 144
procedures 143–4

SWITCH/CASE statements 129
switches 19

networks 58, 70, 76
syntax errors 158, 162

systems software 83
operating systems 83–5, 89–90
utility software 86–8, 90

T
TCP (Transport Control Protocol) 66, 72
ten commandments for computer ethics

92
terminal (final) testing 157, 162
test data 159, 162–3
test plans 159, 163
testing 162–3

purpose of 157
refining algorithms 160
syntax and logic errors 158
types of 157

trace tables 111, 121
translators 176–7, 179, 180, 181
transmission errors 54
transmission media 54, 57–8, 70
Trojans 73, 81
truth tables 164–7, 171
two-dimensional arrays 141–2, 151
two-factor authentication (2FA) 79, 153

U
Unicode 32, 49
Uniform Resource Locators (URLs) 59
USB connectors 65
user access rights 78, 85, 90
user interface 83–4, 89
user management 83
usernames 153
utility software 86, 90

data compression 87–8
defragmentation 86–7
encryption 86

V
validation 154, 161
variables 125–6, 146
virtual machines 179
virtual memory 14, 42
viruses 73, 81

anti-malware software 77–8
voice-controlled systems 84
volatile memory 41

RAM 13, 41–2
Von Neumann architecture 4–5, 10

IN
D

EX

9781510484160.indb 208 27/05/20 7:22 PM

209

W
web servers 60, 70
WHILE loops 130–1
white box testing 157
wide area networks (WANs) 53, 69

Wi-Fi 58, 63, 71
advantages and disadvantages 64
bandwidth 54
encryption 64

Windows, Icons, Menus and Pointers
(WIMP) interface 84

wireless access points (WAPs) 58, 70
workplace

computer use 94
logging systems 92–3, 97

worms 73, 81
writing to files 138–9, 149

In
de

x

9781510484160.indb 209 27/05/20 7:22 PM

The Publishers would like to thank the following for permission to reproduce copyright material.
Adobe is either a registered trademark or trademark of Adobe in the United States and/or other countries.

Apple product screenshot(s) reprinted with permission from Apple.

Google and the Google logo are registered trademarks of Google LLC, used with permission.

Libre Office product screenshot(s) reprinted under the Creative Commons Attribution-Share Alike 3.0 License (https://
creativecommons.org/licenses/by-sa/3.0/).

Microsoft product screenshot(s) used with permission from Microsoft.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

Python is a registered trademark of the Python Software Foundation.

Photo credits

p. 1 © Raia/stock.adobe.com; p. 2 © Ymgerman/Shutterstock.com; p. 7 © Sergey Jarochkin/123RF.com; p. 8 © samunella/stock.
adobe.com; p. 16 t © mingis/istock/thinkstock, b © Gianni Furlan/Getty Images/Hemera/Thinkstock; p. 17 © sergojpg /stock.
adobe.com; pp. 34, 35 and 39 © George Rouse; p. 84 screenshot background image © Mike Berenson/Colorado Captures/
Moment/Getty Images; p. 94 © Andrey Rudakov/Bloomberg/Getty Images; p. 96 © Peter Essick/Aurora Photos/Cavan/Alamy
Stock Photo; p. 105 © Casimiro /stock.adobe.com; p. 107 © TfL from the London Transport Museum collection; p. 164
Wellcome Collection. Attribution 4.0 International (CC BY 4.0); p. 174 © Bettmann/Getty Images; p. 176 © Division of Medicine
and Science, National Museum of American History, Smithsonian Institution.

Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked the Publishers will be
pleased to make the necessary arrangements at the first opportunity.

ACKNOWLEDGEMENTS

210

A
ck

no
w

le
dg

em
en

ts

9781510484160.indb 210 27/05/20 7:22 PM

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://Raia/stock.adobe.com
http://Ymgerman/Shutterstock.com
http://Jarochkin/123RF.com
http://samunella/stock.adobe.com
http://samunella/stock.adobe.com
http://sergojpg/stock.adobe.com
http://sergojpg/stock.adobe.com
http://sergojpg/stock.adobe.com
http://Casimiro/stock.adobe.com
http://Casimiro/stock.adobe.com

Code-IT
in Python

Help your GCSE students progress beyond simple programming
skills and removing any fear they might have transitioning from
a block-based language to a text-based language with our
coding resource, Code-IT for Python.
Code-IT in Python consists of 14 stand-alone modules, each focused on a
different programming content required at GCSE – allowing you to pick and
choose which modules your students need. Using our responsive, online
environment, students are encouraged to write and test their own code in
order to solve Coding Challenges.

It’s not your average ‘how-to code’ product

A digital resource that provides your students with a learning journey
through essential programming skills required at GCSE.

It will fi ll students’ coding skills gap

Designed to focus on a range of programming skills, Code-IT in Python will
equip your students with the necessary tools needed to complete any GCSE
programming task effectively and effi ciently.

It will save you time!

Auto-marked Coding Challenges require students to write, test and de-bug
their code. Feedback is given immediately, so students can understand the
areas they need to amend and learn from.

It’s packed full of resources

As well as detailed progress reports on students’ activity, you will fi nd
guidance sheets, lesson ideas and starter presentations to help reinforce
learning and cut down on the time you spend creating new resources.

Pick and choose the modules you want

£30 + VAT per module for one-year access. Save up to 20% by exploring our
bundle offers.

Visit our website or contact your local Sales Representative to fi nd out
more about Code-IT in Python and to register for a free trial.

www.hodderducation.co.uk/code-it computing@hoddereducation.co.uk

Discover a new way to help
students learn how to code with
Code-IT in Python.

Please note,
none of the
Code-IT in

Python modules
are endorsed by

OCR

http://www.hoddereducation.co.uk/dynamiclearning
mailto:education@bookpoint.co.uk
http://www.hoddereducation.co.uk

	Cover
	Book title
	Copyright
	Contents
	How to use this book
	SECTION 1 COMPUTER SYSTEMS
	1.1 System architecture
	1.1.1 Architecture of the CPU
	1.1.2 CPU performance
	1.1.3 Embedded systems

	1.2 Memory and storage
	1.2.1 Primary storage – memory
	1.2.2 Secondary storage
	1.2.3 Units
	1.2.4 Data storage
	1.2.5 Compression

	1.3 Computer networks, connections and protocols
	1.3.1 Networks and topologies
	1.3.2 Wired and wireless networks, protocols and layers

	1.4 Network security
	1.4.1 Threats to computer systems and networks
	1.4.2 Identifying and preventing vulnerabilities

	1.5 Systems software
	1.5.1 Operating systems
	1.5.2 Utility software

	1.6 Ethical, legal, cultural and environmental impacts of digital technology
	1.6.1 Ethical, legal, cultural and environmental impact

	SECTION 2 COMPUTATIONAL THINKING, ALGORITHMS AND PROGRAMMING
	2.1 Algorithms
	2.1.1 Computational thinking
	2.1.2 Designing, creating and ren fi ing algorithms
	2.1.3 Sorting and searching algorithms

	2.2 Programming fundamentals
	2.2.1 Programming fundamentals
	2.2.2 Data types
	2.2.3 Additional programming techniques

	2.3 Producing robust programs
	2.3.1 Defensive design
	2.3.2 Testing

	2.4 Boolean logic
	2.4.1 Boolean logic

	2.5 Programming languages and integrated development environments
	2.5.1 Languages
	2.5.2 The integrated development environment (IDE)

	Appendix
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Knowledge check answers
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Acknowledgements

